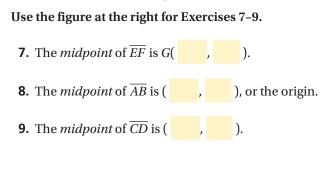
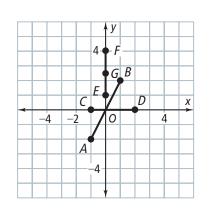


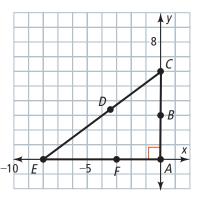
Midpoint and Distance in the Coordinate Plane

Vocabulary

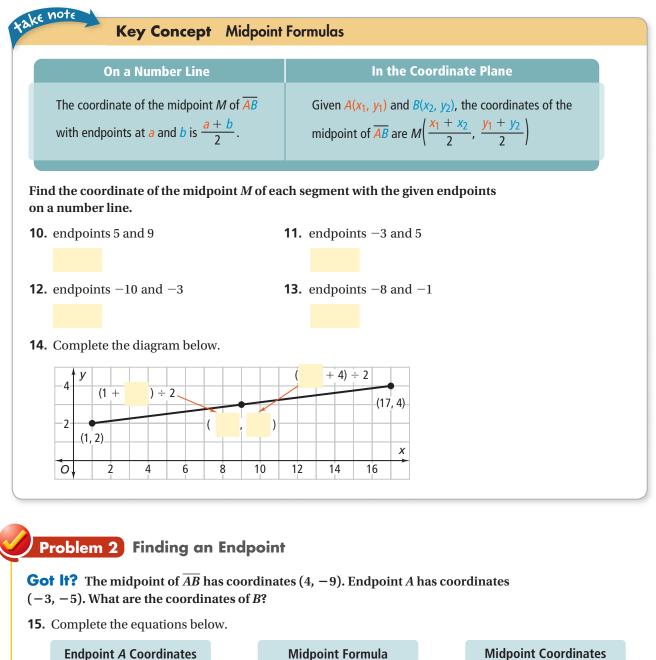
Review

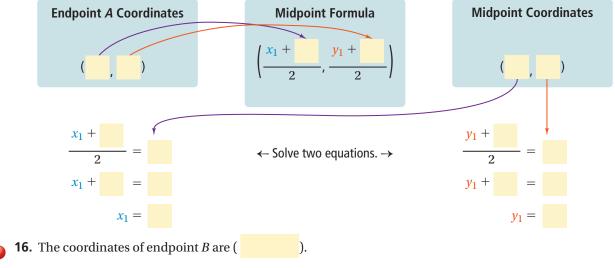

- **1.** Points *A* and *B* are both at the *origin*.
- **2.** If AB = BC, then *B* is the midpoint of \overline{AC} .
- **3.** The *midpoint* of \overline{AE} is *F*.
- **4.** The *Pythagorean Theorem* can be used for any triangle.
- **5.** Point *C* is at (6, 0).
- **6.** Point *E* has a *y*-coordinate of -8.


• Vocabulary Builder

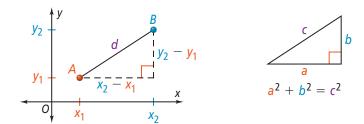

midpoint (noun) MID poynt

Definition: A *midpoint* of a segment is a point that divides the segment into two congruent segments.


Use Your Vocabulary



26

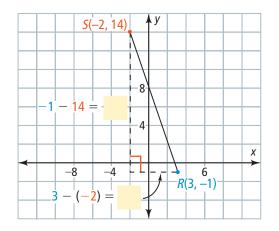


Lesson 1-7

Formula The Distance Formula

ke not

The distance between two points $A(x_1, y_1)$ and $B(x_2, y_2)$ is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$. The Distance Formula is based on the Pythagorean Theorem.


Use the diagrams above. Draw a line from each triangle side in Column A to the corresponding triangle side in Column B.

Column A	Column B
17. $y_2 - y_1$	a
18. $x_2 - x_1$	b
19. distance, <i>d</i>	С

Problem 3 Finding Distance

Got It? \overline{SR} has endpoints S(-2, 14) and R(3, -1). What is SR to the nearest tenth?

- **20.** Complete the diagram at the right.
- **21.** Let S(-2, 14) be (x_1, y_1) and let R(3, -1) be (x_2, y_2) . Use the justifications and complete the steps below to find *SR*.

$$d = \sqrt{(2 - x_1)^2 + (2 - y_1)^2}$$

$$SR = \sqrt{(2 - (-2))^2 + (2 - 14)^2}$$

$$= \sqrt{(2 - (-2))^2 + (2 - 14)^2}$$

$$= \sqrt{(2 - (-2))^2}$$

$$= \sqrt{(2 - (-2))^2}$$

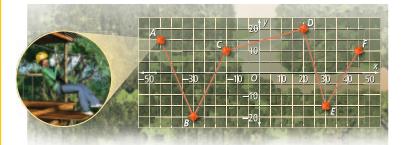
$$= \sqrt{(2 - (-2))^2}$$

Use the Distance Formula.

Substitute.

Subtract.

Simplify powers.


Add.

Use a calculator.

28

Problem 4 Finding Distance

Got lt? On a zip-line course, you are harnessed to a cable that travels through the treetops. You start at Platform *A* and zip to each of the other platforms. How far do you travel from Platform *D* to Platform *E*? Each grid unit represents 5 m.

22. The equation is solved below. Write a justification for each step.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$DE = \sqrt{(30 - 20)^2 + (-15 - 20)^2}$$

$$=\sqrt{10^2 + (-35)^2} = \sqrt{100 + 1225} = \sqrt{1325}$$

23. To the nearest tenth, you travel about

Lesson Check • Do you UNDERSTAND?

Reasoning How does the Distance Formula ensure that the distance between two different points is positive?

m.

- **24.** A radical symbol with no sign in front of it indicates a positive / negative square root.
- **25.** Now answer the question.

Copyright © by Pearson Education, Inc. or its affiliates. All Rights Reserved.

Math Succ	ess	
Check off the vocabu	llary words that you understand.	
midpoint	distance coordinate plane	
Rate how well you ca	an use the Midpoint and Distance Formulas.	
Need to review 0 2	4 6 8 10 Now I get it!	