10-1
 Areas of Parallelograms and Triangles

Vocabulary

Review

The diagram below shows the different types of parallelograms.

Underline the correct word to complete each sentence.

1. All parallelograms are quadrilaterals / rectangles.
2. All parallelograms have opposite sides parallel / perpendicular.
3. Some parallelograms are trapezoids / rectangles .

Vocabulary Builder

area (noun) EHR ee uh
Definition: Area is the number of square units needed to cover a given surface.
Main Idea: You can find the area of a parallelogram or a triangle when you know the length of its base and its height.

- Use Your Vocabulary

Find the area of each figure.

square units
5.

square units

square units

Theorem 10-1 Area of a Rectangle
The area of a rectangle is the product of its base and height.

$$
A=b h
$$

Theorem 10-2 Area of a Parallelogram
The area of a parallelogram is the product of a base and the corresponding height.

$$
A=b h
$$

7. Explain how finding the area of a parallelogram and finding the area of a rectangle are alike.
\qquad
\qquad

Problem 1 Finding the Area of a Parallelogram

Got It? What is the area of a parallelogram with base length 12 m and height 9 m ?
8. Label the parallelogram at the right.
9. Find the area.

$$
\begin{array}{rlrl}
A & =b h & & \text { Write the formula. } \\
& =12(\quad) & & \text { Substitute. } \\
& = & & \\
\text { Simplify. } .
\end{array}
$$

10. The area of the parallelogram is m^{2}.

Problem 2 Finding a Missing Dimension

Got lt? A parallelogram has sides 15 cm and 18 cm . The height corresponding to a $15-\mathrm{cm}$ base is 9 cm . What is the height corresponding to an $18-\mathrm{cm}$ base?
11. Label the parallelogram at the right.

Let h represent the height corresponding to the $18-\mathrm{cm}$ base.
12. Find the area.

13. The area of the parallelogram is cm^{2}.
14. Use the area of the parallelogram to find the height corresponding to an $18-\mathrm{cm}$ base.

A	$=b h$		Write the formula.
	$=\left(\begin{array}{ll}\text { (}) h & \\ \underline{135} & =\frac{(}{l} \quad h\end{array}\right.$		Substitute.
			Divide each side by the length of the base.
			Simplify.

15. The height corresponding to an $18-\mathrm{cm}$ base is cm.

Theorem 10-3 Area of a Triangle

The area of a triangle is half the product of a base and the corresponding height.

$$
A=\frac{1}{2} b h
$$

16. Explain how finding the area of a triangle is different from finding the area of a rectangle.
\qquad
\qquad

Problem 3 Finding the Area of a Triangle

Got It? What is the area of the triangle?

17. Circle the formula you can use to find the area of the triangle.

$A=b h$

$$
A=\frac{1}{2} b h
$$

18. Convert the lengths of the base and the hypotenuse to inches.
base hypotenuse
$1 \mathrm{ft}=$ in. $\quad 1 \mathrm{ft} 1 \mathrm{in} .=\quad$ in.
19. Find the area of the triangle.
20. The area of the triangle is in^{2}.

Problem 4 Finding the Area of an Irregular Figure

Got It? Reasoning Suppose the base lengths of the square and triangle in the figure are doubled to 12 in ., but the height of each polygon remains the same. How is the area of the figure affected?
21. Complete to find the area of each irregular figure.

Area of Original Irregular Figure

$$
\begin{aligned}
A & =6(6)+\frac{1}{2}(6)(8) \\
& =\quad+24 \\
& =
\end{aligned}
$$

Area of New Irregular Figure

$$
\begin{aligned}
A & =(2)(6)(6)+\frac{1}{2}(2)(6)(8) \\
& =(2)(36)+(2)(\quad) \\
& =(2)(\quad+\quad)=(2)(\quad)=
\end{aligned}
$$

22. How is the area affected?

Lesson Check - Do you UNDERSTAND?

$\square A B C D$ is divided into two triangles along diagonal $\overline{A C}$. If you know the area of the parallelogram, how do you find the area of $\triangle A B C$?

Write T for true or F for false.
23. Since $\overline{A C}$ is a diagonal of $\square A B C D, \triangle A B C$ is congruent to $\triangle C D A$.

24. The area of $\triangle A B C$ is greater than the area $\triangle C D A$.
25. The area of $\triangle A B C$ is half the area of $\square A B C D$.
26. If you know the area of the parallelogram, how do you find the area of $\triangle A B C$?

Math Success

Check off the vocabulary words that you understand.
\square base of a parallelogram height of a parallelogram
\square base of a triangleheight of a triangle

Rate how well you can find the area of parallelograms and triangles.

