10-2 Solve It!

Rearranging figures into familiar shapes is an example of the Solve a Simpler Problem strategy.

Getting Ready!

Draw a trapezoid on a sheet of graph paper.
Label the bases b_{1} and b_{2}. Draw its midsegment.
Cut out the trapezoid, and then cut it along the
midsegment. Rotate the top part of the trapezoid
180° so that b_{1} and b_{2} now form one long base.
How can you use this new figure to find the area
of the trapezoid? Explain your reasoning.

10-2 Lesson Quiz

1. What is the area of the trapezoid below?

2. What is the area of kite $Q R S T$?

3. Suppose the area of a trapezoid is $126 \mathrm{yd}^{2}$. If the bases of the trapezoid are 17 yd and 11 yd long, what is the height?
4. Do you UNDERSTAND? Suppose a square has side length s. How could you use the formula for the area of a trapezoid to find the area of the square?

Answers

Solve It!

The new figure is a \square with base $b_{1}+b_{2}$ and height $\frac{1}{2} h$.
$A=\left(b_{1}+b_{2}\right) \cdot \frac{1}{2} h$ or
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$.

Lesson Quiz

1. $24.61 \mathrm{~cm}^{2}$
2. $17 \mathrm{ft}^{2}$
3. 9 yd
4. For a square,

$$
h=b_{1}=b_{2}=s
$$

Substituting into the trapezoid area formula, you get $A=\frac{1}{2} s(s+s)=$ $\frac{1}{2} s(2 s)=s^{2}$. This result is consistent with the formula for the area of a square.

