10-3

Vocabulary

Review

Write T for true or F for false.

\qquad 1. In a regular polygon, all sides are congruent.
\qquad 2. In a regular polygon, all angles are acute.
3. Cross out the figure that is NOT a regular polygon.

Vocabulary Builder

apothem (noun) AP uh them
Related Words: center, regular polygon
Definition: The apothem is the perpendicular distance from the center of a regular polygon to one of its sides.

Use Your Vocabulary

4. Underline the correct word to complete the statement.

In a regular polygon, the apothem is the perpendicular distance from the center to $\mathrm{a}(\mathrm{n})$ angle / side .
5. Label the regular polygon below using apothem, center, or side.

Problem 1 Finding Angle Measures

Got It? At the right, a portion of a regular octagon has radii and an apothem drawn. What is the measure of each numbered angle?
6. A regular octagon has sides.

7. Circle the type of triangles formed by the radii of the regular octagon.
equilateral isosceles right
8. Use the justifications below to find the measure of each numbered angle.

$$
\begin{aligned}
& m \angle 1=\underline{360}= \text { Divide } 360 \text { by the number of sides. } \\
& m \angle 2=\begin{array}{ll}
(m \angle 1) & \text { The apothem bisects the vertex angle of the } \\
=\frac{1}{2}(&)= \\
90+m \angle 2+m \angle 3= & \text { triangle formed by the radii. } \\
90+ & \\
+m \angle 3= & \text { Triangle Angle-Sum Theorem } \\
+m \angle 3= & \text { Substitute. } \\
m \angle 3= & \text { Simplify. } \\
90 & \text { Subtraction Property of Equality }
\end{array}
\end{aligned}
$$

9. Write the measure of each numbered angle.
$m \angle 1=$
$m \angle 2=$ $m \angle 3=$
\qquad

ke note

Postulate 10-1 and Theorem 10-6

Postulate 10-1 If two figures are congruent, then their areas are equal.
The isosceles triangles in the regular hexagon at the right are congruent. Complete each statement.
10. If the area of $\triangle A O B$ is $24 \mathrm{in.}^{2}$, then the area of $\triangle B O C$ is $\mathrm{in.}^{2}$.
11. If the area of $\triangle B O C$ is $8 \mathrm{~cm}^{2}$, then the area of $\triangle A O C$ is cm^{2}.

Theorem 10-6 Area of a Regular Polygon

The area of a regular polygon is half the product of the apothem and the perimeter.

$$
A=\frac{1}{2} a p
$$

Problem 2 Finding the Area of a Regular Polygon

Got It? What is the area of a regular pentagon with an $8-\mathrm{cm}$ apothem and $11.6-\mathrm{cm}$ sides?

15. Label the regular pentagon with the lengths of the apothem and the sides.
16. Use the justifications below to find the perimeter.

$$
\begin{array}{rlrl}
p & =n s & & \\
& = & \text { Use the fo } \\
& = & & \\
& & \text { Substitute } \\
\text { Simplify. }
\end{array}
$$

17. Use the justifications below to find the area.
$A=\frac{1}{2} a p$
Use the formula for the area of a regular polygon.
$=\frac{1}{2} . \quad$ Substitute for a and for p.
$=\quad$ Simplify.
18. The regular pentagon has an area of cm^{2}.

Problem 3 Using Special Triangles to Find Area

Got It? The side of a regular hexagon is 16 ft . What is the area of the hexagon?

 Round your answer to the nearest square foot.19. Use the information in the problem to complete the problem-solving model below.

Know	Need
I know that the length of each side of the regular	
hexagon is	

Use the diagram at the right.

20. Label the diagram.
21. Circle the relationship you can use to find the length of the apothem.
hypotenuse $=2 \cdot$ shorter leg \quad longer leg $=\sqrt{3} \cdot$ shorter leg

Plan
Draw a diagram to help find the length of the apothem.

Then use the perimeter and area formulas.

24. Now use the perimeter and the formula $A=\frac{1}{2} a p$ to find the area of the hexagon.
25. To the nearest square foot, the area of the hexagon is ft^{2}.

Lesson Check - Do you UNDERSTAND?

What is the relationship between the side length and the apothem in each figure?
square

regular hexagon

equilateral triangle

26. The radius and apothem form what type of triangle in each figure?
square
$\stackrel{\circ}{\circ} \quad \circ$ triangle
regular hexagon
triangle
equilateral triangle triangle
27. Complete to show the relationship between the side length and the apothem.
square
regular hexagon
longer leg $=\sqrt{3} \cdot$ shorter leg
$a=\sqrt{3} . \quad s$
$a=\quad s$
equilateral triangle

$$
\begin{aligned}
\text { longer leg } & =\sqrt{3} \cdot \text { shorter leg } \\
\frac{1}{2} s & =\sqrt{3} \cdot \\
s & =\quad a
\end{aligned}
$$

Math Success

Check off the vocabulary words that you understand.
radius of a regular polygonapothem
Rate how well you can find the area of a regular polygon.

| Need to | 0 | 2 | 4 | 6 | 8 | 10 | Now I
 review | | \mid | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

