10-7 Solve It!

Each of the regular polygons in the table has radius 1. Use a calculator to complete the table for the perimeter and area of each polygon. Write out the first five decimal places.

Polygon	Number of Sides, \boldsymbol{n}	Length of Side, \boldsymbol{s}	Apothem, a	Perimeter $(\boldsymbol{P}=\boldsymbol{n} \boldsymbol{s})$	Area $\left(\boldsymbol{A}=\frac{1}{2} a p\right)$
Decagon	10	$2\left(\sin 18^{\circ}\right)$	$\cos 18^{\circ}$	$6.18033 \ldots$	$2.93892 \ldots$
20 -gon	20	$2\left(\sin 9^{\circ}\right)$	$\cos 9^{\circ}$	\square	\square
$50-$ gon	50	$2\left(\sin 3.6^{\circ}\right)$	$\cos 3.6^{\circ}$	\square	\square
$100-$ gon	100	$2\left(\sin 1.8^{\circ}\right)$	$\cos 1.8^{\circ}$	\square	\square
$1000-$ gon	1000	$2\left(\sin 0.18^{\circ}\right)$	$\cos 0.18^{\circ}$	\square	\square

Look at the results in your table. Notice the perimeter and area of an n-gon as n gets very large. Now consider a circle with radius 1 . What are the circumference and area of the circle? Explain your reasoning.

10-7 Lesson Quiz

1. Do you UNDERSTAND? Suppose the landing pad for a helicopter is shaped like a circle with a $35-\mathrm{ft}$ diameter. What is the area of the landing pad?

2. What is the area of sector $X Y Z$? Leave your answer in terms of π.
3. Suppose $\overline{X Z}$ is drawn in the circle from Question 2 above. What is the area of the
 segment between $\overline{X Z}$ and $\overline{X Z}$ to the nearest tenth?

Answers

Solve It!

20-gon: 6.25737... ;
3.09016. . . ; 50-gon:
6.27905... ; 3.13333...;

100-gon: 6.28215...;
3.13952... ; 1000-gon:
6.28317... ; 3.14157. .

About 6.28, or 2π units; about 3.14 , or π units 2; explanations
may vary. Sample: As the number of sides of a regular polygon with radius 1 increases, its shape gets closer and closer to the circumscribed circle of radius 1 . The table shows that as the perimeter gets closer to 6.28, which $\approx 2 \pi$ and the area gets closer to 3.14 , which $\approx \pi$.

Lesson Quiz

1. about $962 \mathrm{ft}^{2}$
2. $12 \pi \mathrm{~m}^{2}$
3. 22.1
