10-7 Areas of Circles and Sectors

Vocabulary

Review

1. Explain how the area of a figure is different from the perimeter of the figure.
\qquad
\qquad
2. Circle the formula for the area of a parallelogram.
$A=b h$
$A=\frac{1}{2} b h$
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$A=\frac{1}{2} d_{1} d_{2}$
3. Find the area of each figure.

$A=\quad \mathrm{m}^{2}$

$A=\quad \mathrm{cm}^{2}$

$A=\quad \mathrm{ft}^{2}$

Vocabulary Builder

sector (noun) sek tur

Definition: A sector of a circle is a region bounded by an arc of the circle and the two radii to the arc's endpoints.

Main Idea: The area of a sector is a fractional part of the area of a circle.

Use Your Vocabulary

4. Name the arc and the radii that are the boundaries of the shaded sector. arc radii and

5. Circle the name of the shaded sector. sector $A B C$ sector $A C B$ sector $B A C$
6. The shaded sector is what fractional part of the area of the circle? Explain.
\qquad

Theorem 10-1 1 Area of a Circle

The area of a circle is the product of π and the square of the radius.

$$
A=\pi r^{2}
$$

Complete each statement.

7. If the radius is 5 ft , then $A=\pi$.
8. If the diameter is 1.8 cm , then $A=\pi$.

Problem 1 Finding the Area of a Circle

Got It? What is the area of a circular wrestling region with a 42-ft diameter?
9. The radius of the wrestling region is ft .
10. Complete the reasoning model below.

Think	Write
I can use the formula for the area of a circle.	$A=\pi r^{2}$
I can subtitute the radius into the formula and then simplify.	$\begin{aligned} & =\pi \cdot \quad 2 \\ & =\quad \cdot \pi \end{aligned}$
I can use a calculator to find the approximate area.	\approx

11. The area of the wrestling region is about ft^{2}.

Theorem 10-12 Area of a Sector of a Circle

The area of a sector of a circle is the product of the ratio $\frac{\text { measure of the arc }}{360}$ and the area of the circle.

$$
\text { Area of sector } A O B=\frac{m \overparen{A B}}{360} \cdot \pi r^{2}
$$

Complete.

measure of the arc
measure of the arc

$$
\frac{60}{360}=\frac{1}{}
$$

$$
\frac{}{360}=\square
$$

area of the sector

13. 120 \qquad - $\cdot r^{2}$

Problem 2 Finding the Area of a Sector of a Circle

Got It? A circle has a radius of 4 in . What is the area of a sector bounded by a 45° minor arc? Leave your answer in terms of π.
14. At the right is one student's solution.

What error did the student make?
\qquad
\qquad

15. Find the area of the sector correctly.
16. The area of the sector is in. ${ }^{2}$.

note

Key Concept Area of a Segment

The area of a segment is the difference of the area of the sector and the area of the triangle formed by the radii and the segment joining the endpoints.

18. $\triangle P Q R$ is a right triangle, so the base is m and the height is m .
19. Find the area of $\triangle P Q R$.
20. Complete to find the area of the shaded segment. Use a calculator.
area of shaded segment $=$ area of sector $P Q R-$ area of $\triangle P Q R$

$$
\begin{aligned}
& =\quad \cdot \pi- \\
& \approx
\end{aligned}
$$

21. To the nearest tenth, the area of the shaded segment is m^{2}.

Lesson Check - Do you UNDERSTAND?

Reasoning Suppose a sector in $\odot \boldsymbol{P}$ has the same area as a sector in $\odot \boldsymbol{O}$. Can you conclude that $\odot P$ and $\odot O$ have the same area? Explain.

Use the figures at the right for Exercises 22-24.
22. Find the area of sector $A O C$ in $\odot O$.
23. Find the area of sector $R P T$ in $\odot P$.

24. Do the sectors have the same area? Can you conclude that the circles have the same area? Explain.
\qquad
\qquad

Math Success

Check off the vocabulary words that you understand.
sector of a circle
segment of a circlearea of a circle

Rate how well you can find areas of circles, sectors, and segments.

