12-1 Tangent Lines

Vocabulary

Review

1. Cross out the word that does NOT apply to a circle.
arc circumference diameter equilateral radius
2. Circle the word for a segment with one endpoint at the center of a circle and the other endpoint on the circle. arc circumference diameter perimeter radius

Vocabulary Builder

tangent (noun, adjective) TAN junt
Definition: A tangent to a circle is a line, ray, or segment in the plane of the circle that intersects the circle in exactly one point.

Other Word Form: tangency (noun)

Examples: In the diagram, $\overleftrightarrow{A B}$ is tangent to the circle at $B . B$ is the point of tangency. $\overrightarrow{B A}$ is a tangent ray. $\overrightarrow{B A}$ is a tangent segment.

Other Usage: In a right triangle, the tangent is the ratio of the side opposite an acute angle to the side adjacent to the angle.

Use Your Vocabulary

3. Complete each statement with always, sometimes, or never.

A diameter is \qquad a tangent.

A tangent and a circle ? have exactly one point in common.

A radius can \qquad . be drawn to the point of tangency.

A tangent ? passes through the center of a circle.

A tangent is \qquad a ray.
\qquad

Theorems 12-1, 12-2, and 12-3

Theorem 12-1 If a line is tangent to a circle, then the line is perpendicular to the radius at the point of tangency.

Theorem 12-2 If a line in the plane of a circle is perpendicular to a radius at its endpoint on the circle, then the line is tangent to the circle.

Theorem 12-3 If two tangent segments to a circle share a common endpoint outside the circle, then the two segments are congruent.

Use the diagram at the right for Exercises 4-6. Complete each statement.
4. Theorem 12-1 If $\overleftrightarrow{D F}$ is tangent to $\odot O$ at K, then
5. Theorem 12-2 If $\overleftrightarrow{D F} \perp \overline{O K}$, then is tangent to $\odot O$.
6. Theorem 12-3 If $\overline{B A}$ and $\overline{B C}$ are tangent to $\odot O$, then \cong.

Problem 1 Finding Angle Measures

Got It ? $\overline{\mathrm{ED}}$ is tangent to $\odot O$. What is the value of x ?
7. Circle the word that best describes $\overline{O D}$.
diameter radius tangent
8. What relationship does Theorem 12-1 support? Circle your answer.

$\overline{O D} \perp \overline{E D}$
$\overline{O D} \| \overline{E D}$
$\overline{O D} \cong \overline{E D}$
9. Circle the most accurate description of the triangle.
acute isosceles obtuse right
10. Circle the theorem that you will use to solve for x.

Theorem 12-1
Triangle Angle-Sum Theorem
11. Complete the model below.

| Relatesum of angle
 measures in a triangle | is $38 \quad$ plusmeasure
 of $\angle D$ | plusmeasure
 of $\angle E$ | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Write | $=38$ | + | + | |

12. Solve for x.

13. The value of x is

Problem 2 Finding Distance

Got It? What is the distance to the horizon that a person can see on a clear day from an airplane 2 mi above Earth? Earth's radius is about 4000 mi .

14. The diagram at the right shows the airplane at point A and the horizon at point H. Use the information in the problem to label the distances.
15. Use the justifications at the right to find the distance.

$$
\begin{aligned}
& \perp \overline{A H} \\
& 2+A H^{2}=O A^{2} \\
& 2+A H^{2}= \\
&+A H^{2}= \\
& A H^{2}= \\
& A H=\sqrt{ } \\
& A H \approx
\end{aligned}
$$

Theorem 12-1
Pythagorean Theorem

Substitute.
Use a calculator.
Subtract from each side.
Take the positive square root.
Use a calculator.
16. A person can see about miles to the horizon from an airplane 2 mi above Earth.

Problem 3 Finding a Radius

Got $I+$? What is the radius of $\odot O$?

17. Write an algebraic or numerical expression for each side of the triangle.

18. Circle the longest side of the triangle. Underline the side that is opposite the right angle.

$$
10 \quad x \quad x+6
$$

19. Use the Pythagorean Theorem to complete the equation.

$$
{ }^{2}+\quad{ }^{2}=(\quad)^{2}
$$

\square
21. The radius is

Problem 5 Circles Inscribed in Polygons

Got It? $\odot O$ is inscribed in $\triangle P Q R$, which has a perimeter of 88 cm . What is the length of $\overline{Q Y}$?
22. By Theorem $12-3, \overline{P X} \cong \quad, \overline{R Z} \cong \quad$, and $\overline{Q X} \cong \quad$, so $P X=\quad$,
 $R Z=\quad$, and $Q X=$
23. Perimeter $p=P Q+Q R+R P$, so $p=P X+\quad+Q Y+\quad+R Z+$ by the Segment Addition Postulate.
24. Use the values in the diagram and your answer to Exercise 23 to solve for QY.

Lesson Check - Do you UNDERSTAND?

Error Analysis A classmate insists that $\overline{D F}$ is a tangent to $\odot \boldsymbol{E}$. Explain how to show that your classmate is wrong.

Underline the correct word or number to complete the sentence.
25. A tangent to a circle is parallel / perpendicular to a radius.

26. If $\overline{D F}$ is tangent to $\odot E$ at point F, then $m \angle E F D$ must be $30 / 90 / 180$.
27. A triangle can have at most right angle(s).
28. Explain why your classmate is wrong.

Math Success

Check off the vocabulary words that you understand.
circletangent to a circlepoint of tangency
Rate how well you can use tangents to find missing lengths.

