12-2 Chords and Arcs

Vocabulary

Review

Circle the converse of each statement.

1. Statement: If I am happy, then I sing.

If I sing, then I am happy.
If I am not happy, then I do not sing.
If I do not sing, then I am not happy.
2. Statement: If parallel lines are cut by a transversal, then alternate interior angles are congruent.

If lines cut by a transversal are not parallel, then alternate interior angles are not congruent.

If lines cut by a transversal form alternate interior angles that are not congruent, then the lines are not parallel.

If lines cut by a transversal form alternate interior angles that are congruent, then the lines are parallel.

Vocabulary Builder

chord (noun) kawrd
Definition: A chord is a segment whose endpoints are on a circle.

Related Word: arc

- Use Your Vocabulary

3. Complete each statement with always, sometimes, or never.

A chord is ? a diameter.

A diameter is ? a chord.

A radius is ? a chord.

A chord ? has a related arc.

An arc is ? a semicircle.

Theorem 12-4 Within a circle or in congruent circles, congruent central angles have congruent arcs.
4. If $\angle A O B \cong$, then $\overparen{A B} \cong \overparen{C D}$.

Converse Within a circle or in congruent circles, congruent arcs have congruent central angles.

5. If $\widehat{A B} \cong \widehat{C D}$, then $\angle A O B \cong$

Theorem 12-5 Within a circle or in congruent circles, congruent central angles have congruent chords.
6. If $\angle A O B \cong \angle C O D$, then $\overline{A B} \cong$

Converse Within a circle or in congruent circles, congruent chords have congruent central angles.

7. If $\overline{A B} \cong \overline{C D}$, then $\cong \angle C O D$.

Theorem 12-6 Within a circle or in congruent circles, congruent chords have congruent arcs.
8. If $\overline{A B} \cong$, then $\widehat{A B} \cong \widehat{C D}$.

Converse Within a circle or in congruent circles, congruent arcs have congruent
 chords.
9. If $\widehat{A B} \cong$, then $\overline{A B} \cong \overline{C D}$.

Problem 1 Using Congruent Chords

Got lt? Use the diagram at the right. Suppose you are given $\odot \boldsymbol{O} \cong \odot \boldsymbol{P}$ and $\angle O B C \cong \angle P D F$. How can you show $\angle O \cong \angle P$? From this, what else can you conclude?
10. Complete the flow chart below to explain your conclusions.

Theorem 12-7 and Its Converse, Theorems 12-8, 12-9, 12-10

Theorem 12-7 Within a circle or in congruent circles, chords equidistant from the center or centers are congruent.

Converse Within a circle or in congruent circles, congruent chords are equidistant from the center (or centers).
11. If $O E=O F$, then $\overline{A B} \cong$
12. If $\overline{A B} \cong$, then $O E=$

Theorem 12-8 In a circle, if a diameter is perpendicular to a chord, then it bisects the chord and its arc.
13. If $\overline{A B}$ is a diameter and $\overline{A B} \perp \overline{C D}$, then $\overline{C E} \cong \quad$ and $\overline{C A} \cong$.

Theorem 12-9 In a circle, if a diameter bisects a chord (that is not a diameter), then it is perpendicular to the chord.
14. If $\overline{A B}$ is a diameter and $\overline{C E} \cong \overline{E D}$, then $\overline{A B} \perp$

Theorem 12-10 In a circle, the perpendicular bisector of a chord contains the center of the circle.
15. If $\overline{A B}$ is the perpendicular bisector of chord $\overline{C D}$, then contains the center of $\odot O$.

Problem 2 Finding the Length of a Chord

Got It? What is the value of x ? Justify your answer.

16. What is the measure of each chord? Explain.
\qquad
\qquad
\qquad
\qquad

17. Circle the reason why the chords are congruent.

Chords that have equal measures are congruent.

Chords that are equidistant from the center of a circle are congruent.
18. Circle the theorem that you will use to find the value of x.

Theorem 12-5
Theorem 12-7
Converse of Theorem 12-7
Theorem 12-8
Theorem 12-10
19. Circle the distances from the center of a circle to the chords.
16
18
36
x
20. The value of x is

Problem 3 Using Diameters and Chords

Got It? The diagram shows the tracing of a quarter. What is its radius?
Underline the correct word to complete each sentence. Then do each step.
21. First draw two chords / tangents .
22. Next construct one / two perpendicular bisector(s).

23. Label the intersection C. It is the circle's center / chord .
24. Measure the diameter / radius .
25. The radius is about mm .

Problem 4 Finding Measures in a Circle

Got It? Reasoning In finding y, how does the auxiliary $\overline{B A}$ make the problem simpler to solve?
26. $\overline{B A}$ is the hypotenuse of a right \qquad , so you can use the \qquad Theorem to solve for y.

Lesson Check - Do you UNDERSTAND?

Vocabulary Is a radius a chord? Is a diameter a chord? Explain your answers.
27. Circle the name(s) of figure(s) that have two endpoints on a circle. Underline the name(s) of figure(s) that have one endpoint on a circle.
chord diameter radius ray segment
28. Is a radius a chord? Is a diameter a chord? Explain.
\qquad
\qquad

Math Success

Check off the vocabulary words that you understand.circlechord
\square
radiusdiameter

Rate how well you can use chords to find measures.

