

318

Corollaries to Theorem 12-11 Inscribed Angle Theorem

Corollary 1

ake note

Corollary 2

Corollary 3

Two inscribed angles that intercept the same arc are congruent.

An angle inscribed in a semicircle is a right angle.

The opposite angles of a quadrilateral inscribed in a circle are supplementary.

Use the diagram at the right. Write T for *true* or F for *false*.

- **14.** $\angle P$ and $\angle Q$ intercept the same arc.
- **15.** \angle *SRP* and $\angle Q$ intercept the same arc.
- **16.** \widehat{TSR} is a semicircle.
- **17.** $\angle PTS$ and $\angle SRQ$ are opposite angles.
- **18.** \angle *PTS* and \angle *SRP* are supplementary angles.

Problem 2 Using Corollaries to Find Angle Measures

Got It? In the diagram at the right, what is the measure of each numbered angle?

19. Use the justifications at the right to complete each statement.

Inscribed Angle Theorem

Add within parentheses.

Simplify.

20. Circle the corollary you can use to find $m \angle 2$.

An angle inscribed in a semicircle is a right angle.

The opposite angles of a quadrilateral inscribed in a circle are supplementary.

21. Now solve for $m \angle 2$.

22. Underline the correct word to complete the sentence.

The dashed line is a diameter / radius.

23. Circle the corollary you can use to find $m \angle 1$ and $m \angle 3$.

An angle inscribed in a semicircle	The opposite angles of a quadrilateral
is a right angle.	inscribed in a circle are supplementary.

Use your answer to Exercise 23 to find the angle measures.

26. So, $m \angle 1 = 2$, $m \angle 2 = 2$, $m \angle 3 = 2$, and $m \angle 4 = 2$.

25.
$$m \angle 3 =$$

ake note

Theorem 12-12

Problem 3 Finding Arc Measure

