12-5
 Circles in the Coordinate Plane

Vocabulary

Review

Write T for true or F for false.
\qquad 1. The coordinate plane extends without end and has no thickness.
\qquad 2. Only lines can be graphed in the coordinate plane.
\qquad 3. Any polygon can be plotted in the coordinate plane.
4. $(0,5)$ and $(5,0)$ are the same point in the coordinate plane.
\qquad 5. The coordinate plane is three-dimensional.
\qquad 6. You can find the slope of a line in the coordinate plane.

- Vocabulary Builder

standard form (noun) STAN durd fawrm

Main Idea: The standard form of an equation gives information that can help you graph the equation in the coordinate plane.

Examples: The standard form of an equation of a circle is $(x-h)^{2}+(y-k)^{2}=r^{2}$. The standard form of a linear equation is $A x+B y=C$. The standard form of a quadratic equation is $y=a x^{2}+b x+c$.

Use Your Vocabulary

Draw a line from each equation in Column A to its standard form in Column B.

Column A

7. $y=2 x+3$

Column B
8. $y=\frac{3}{4} x-2$

$$
x+y=0
$$

$$
2 x-y=-3
$$

9. $y=-x$
10. $0=2 y-4 x+3$
$3 x-4 y=8$
$4 x-2 y=3$

An equation of a circle with center (h, k) and radius r is $(x-h)^{2}+(y-k)^{2}=r^{2}$.

Complete each sentence with center, circle, or radius.

11. Each point on a ? is the same distance from the center.
12. The equation of a circle with center $(-1,0)$ and ? 6 is $(x+1)^{2}+(y-0)^{2}=6^{2}$.

13. Each point on a circle is r units from the ? ?.

14. The Distance Formula is $d=\sqrt{\left(x_{2}-\quad\right)^{2}+\left(y_{2}-\quad\right)^{2}}$
15. How is d in the Distance Formula related to the radius r in the standard equation of a circle?
\qquad
\qquad
\qquad
16. How are the Distance Formula and the standard form of the equation of a circle alike?
\qquad
\qquad
\qquad

Problem 1 Writing the Equation of a Circle

Got It ? What is the standard equation of the circle with center $(3,5)$ and radius 6 ?
17. The x-coordinate of the center is
18. The y-coordinate of the center is
19. Is the standard equation of a circle $(x-h)^{2}+(y-k)^{2}=d$
20. Identify the values of h, k, and r.
$h=$
$k=$
$r=$
21. Write the standard equation of the circle with center $(3,5)$ and radius 6 .
$(x-\quad)^{2}+(y-\quad)^{2}=\quad 2$
22. Simplify the equation in Exercise 21.

$$
(x-\quad)^{2}+(y-\quad)^{2}=
$$

Problem 2 Using the Center and a Point on a Circle

Got It? What is the standard equation of the circle with center $(4,3)$ that passes through the point $(-1,1)$?
23. Complete the reasoning model below.

Know (h, k) is (\square, \square).	Need The radius \square	Plan Use the Distance Formula
$(-1,1)$ is a point on the circle.	The standard equation of the circle	to find \square. Then substitute for (h, k) and for \square.

24. Use the Distance Formula to find r.
$d=\sqrt{\left(x_{2}-\quad\right)^{2}+\left(y_{2}-\quad\right)^{2}} \quad$ Write the Distance Formula.
$r=\sqrt{(4-\quad)^{2}+(3-\quad)^{2}} \quad$ Substitute.
$r=\sqrt{(\quad)^{2}+(\quad)^{2}} \quad$ Simplify within parentheses.
$r=\sqrt{(\quad)+(\quad)} \quad$ Square each number.
$r=\sqrt{ }$
Add.
25. Now write the standard form of the circle with center $(4,3)$ that passes through the point $(-1,1)$.
$(x-\quad)^{2}+(y-\quad)^{2}=\quad 2 \quad$ Use the standard form of an equation of a circle.
$(x-\quad)^{2}+(y-\quad)^{2}=\quad 2$ Substitute.
$(x-\quad)^{2}+(y-\quad)^{2}=\quad$ Simplify.

Problem 3 Graphing a Circle Given Its Equation

Got It? Suppose the equation $(x-7)^{2}+(y+2)^{2}=64$ represents the position and transmission range of a cell tower. What does the center of the circle represent? What does the radius represent?
Place $\mathrm{a} \checkmark$ in the box if the response is correct. Place an X if it is incorrect.
26. The transmission range is the same distance all around the cell tower.
27. The center of the circle represents the position of the cell tower.
28. The center of the circle represents the transmission range.
29. The radius of the circle represents the position of the cell tower.
30. The radius of the circle represents the transmission range.

Got It? What is the center and radius of the circle with equation $(x-2)^{2}+(y-3)^{2}=100$? Graph the circle.
31. The center of the circle is ($2, \quad$).
32. $r^{2}=$
33. The radius of the circle is
34. Graph the circle on the coordinate plane at the right.

Lesson Check - Do you UNDERSTAND?

Suppose you know the center of a circle and a point on the circle. How do you determine the equation of the circle?
35. Do you know the value of h ?
36. Do you know the value of k ?

Yes / No
37. Do you know the value of r ?

Yes / No
38. How can you find the missing value?
\qquad
39. Once you know h, k, and r, how do you determine an equation of the circle?
\qquad
\qquad

Math Success

Check off the vocabulary words that you understand.

> circle

Distance Formula
standard form
Rate how well you can use the standard form of a circle.

