2-3
 Biconditionals and Definitions

Vocabulary

Review

Underline the hypothesis in each statement.

1. If it rains on Friday, I won't have to cut the grass on Saturday.
2. If I go to sleep early tonight, then I won't be late for school tomorrow.
3. A triangle is equilateral if it has three congruent sides.
4. I'll know how to write biconditionals if I can identify a hypothesis and a conclusion.

Vocabulary Builder

bi- (prefix) by
Definition: $b i$ - is a prefix that means having two.
Examples: A bicycle has two wheels. Someone who is bilingual speaks two languages fluently.

Use Your Vocabulary

Draw a line from each word in Column A to its meaning in Column B.

Column A

5. biannually (adverb)
6. biathlon (noun)
7. bicentennial (adjective)
8. bicoastal (adjective)
9. biped (noun)
10. bipartisan (adjective)
11. biplane (noun)
12. biweekly (adjective)

Column B

occurring every two hundred years
a two-footed animal
having two coasts
supported by two parties
occurring every two weeks
occurring every two years
a plane with two sets of wings
a two-event athletic contest

A biconditional combines $p \rightarrow q$ and $q \rightarrow p$ as $p \leftrightarrow q$.
You read $p \leftrightarrow q$ as " p if and only if q."
13. Complete the biconditional.

A ray is an angle bisector ? it divides an angle into two congruent angles.
\qquad

Problem 1 Writing a Biconditional

Got It? What is the converse of the following true conditional? If the converse is also true, rewrite the statements as a biconditional.

If two angles have equal measure, then the angles are congruent.
14. Identify the hypothesis (p) and the conclusion (q).
$p:$ \qquad q: \qquad
15. Circle the converse ($q \rightarrow p$) of the conditional.

If two angles do not have equal measure, then the angles are not congruent.
16. Now write the statements as a biconditional ($p \leftrightarrow q$).
\qquad if and only if \qquad .

Problem 2 Identifying the Conditionals in a Biconditional

Got It? What are the two conditionals that form this biconditional?
Two numbers are reciprocals if and only if their product is 1 .
17. Identify p and q.
p : \qquad q : \qquad
18. Write the conditional $p \rightarrow q$.

If \qquad ,
then \qquad .
19. Write the conditional $q \rightarrow p$.

If \qquad ,
then \qquad .

Problem 3 Writing a Definition as a Biconditional

Got It? Is this definition of straight angle reversible? If yes, write it as a true biconditional.

A straight angle is an angle that measures 180.
20. Reversible means you can reverse p and in the conditional.
21. Write the conditional.

If \qquad ,
then \qquad -
22. Write the converse.

If \qquad ,
then \qquad .
23. Write the biconditional.
\qquad ,
if and only if \qquad .

Problem 4 Identifying Good Definitions

Got It? Is the following statement a good definition? Explain.
A square is a figure with four right angles.
24. Write the conditional.
\qquad
\qquad
\qquad
25. Write the converse.
27. Is the definition of a square a good definition? Explain.
26. Which statement is true, the conditional, the converse, or both?
\qquad
\qquad

Lesson Check - Do you UNDERSTAND?

Compare and Contrast Which of the following statements is a better definition of a linear pair?

A linear pair is a pair of supplementary angles.
A linear pair is a pair of adjacent angles with noncommon sides that are opposite rays.

Use the figures below for Exercises 28-31.

Underline the correct number or numbers to complete each sentence.
28. Figure(s) $1 / 2 / 3 / 4$ show(s) linear pairs.
29. Figure(s) $1 / 2 / 3 / 4$ show(s) supplementary angles.
30. Figure(s) $1 / 2 / 3 / 4$ show(s) adjacent angles.
31. Figure(s) $1 / 2 / 3 / 4$ show(s) adjacent angles whose noncommon sides are opposite rays.
32. Underline the correct word to complete the sentence.

Supplementary angles are always / sometimes / never linear pairs.
33. Write the better definition of a linear pair.

Math Success

Check off the vocabulary words that you understand.
\square biconditionalconditionalhypothesisconclusion

Rate how well you can use biconditionals.

