

Biconditionals and Definitions

Vocabulary

Review

Underline the hypothesis in each statement.

- 1. If it rains on Friday, I won't have to cut the grass on Saturday.
- 2. If I go to sleep early tonight, then I won't be late for school tomorrow.
- **3.** A triangle is equilateral if it has three congruent sides.
- 4. I'll know how to write biconditionals if I can identify a hypothesis and a conclusion.

Vocabulary Builder

bi- (prefix) **by**

Definition: *bi*- is a prefix that means having two.

Examples: A *bicycle* has two wheels. Someone who is *bilingual* speaks two languages fluently.

• Use Your Vocabulary

Draw a line from each word in Column A to its meaning in Column B.

Column A	Column B
biannually (adverb)	occurring every two hundred years
biathlon (noun)	a two-footed animal
bicentennial (adjective)	having two coasts
bicoastal (adjective)	supported by two parties
biped (noun)	occurring every two weeks
bipartisan (adjective)	occurring every two years
biplane (noun)	a plane with two sets of wings
biweekly (adjective)	a two-event athletic contest
	Column A biannually (adverb) biathlon (noun) bicentennial (adjective) bicoastal (adjective) biped (noun) bipartisan (adjective) biplane (noun) biweekly (adjective)

42

	Key Concept Bic	onditional Statements	
A biconditiond	<i>il</i> combines $p \rightarrow q$ and <i>d</i>	$q \rightarrow p \text{ as } p \leftrightarrow q.$	
You read $p \leftrightarrow$	<i>q</i> as " <i>p</i> if and only if <i>q</i> ."		
13. Complete	the biconditional.		
A ray is an	angle bisector <u>?</u> it div	vides an angle into two congruent	angles.
Problem	Writing a Bicon	nditional	
Got It? What	at is the converse of the	following true conditional? If the	e converse is
also true, rew	rite the statements as a	biconditional.	
-		e, then the angles are congruent	
14. Identify th	he hypothesis (<i>p</i>) and the	e conclusion (q).	
<i>p</i> :		q:	
15. Circle the	converse $(q \rightarrow p)$ of the	conditional.	
		If two angles are congruent,	
	e, then the angles ongruent.	then the angles have equal measure.	then the angles do <i>not</i> have equal measure.
	e the statements as a bic		-1
		if and only if	
		in unite only in	
		Conditionals in a Bicond	itional
Got It? What	at are the two condition	Conditionals in a Bicond inals that form this biconditional?	itional
Got It? What Two num	at are the two condition bers are reciprocals if a	Conditionals in a Bicond	itional
Got It? What	at are the two condition bers are reciprocals if a	Conditionals in a Bicond inals that form this biconditional?	itional
Got It? What Two num 17. Identify <i>p</i>	at are the two condition bers are reciprocals if a	Conditionals in a Bicond nals that form this biconditional? and only if their product is 1.	itional
Got It? What Two num 17. Identify <i>p</i> <i>p</i> :	at are the two condition bers are reciprocals if a and <i>q</i> .	Conditionals in a Bicond nals that form this biconditional? and only if their product is 1.	itional
Got It? What Two num 17. Identify <i>p</i> <i>p</i> : 18. Write the	at are the two condition bers are reciprocals if a and q . conditional $p \rightarrow q$.	Conditionals in a Bicond nals that form this biconditional? and only if their product is 1.	itional
Got If? What Two num 17. Identify <i>p</i> <i>p</i> : 18. Write the of If	at are the two condition bers are reciprocals if a and q . conditional $p \rightarrow q$.	Conditionals in a Bicondianals that form this biconditional? and only if their product is 1.	itional
Got If? What Two num! 17. Identify p p: 18. Write the of If then	at are the two condition bers are reciprocals if a and q . conditional $p \rightarrow q$.	Conditionals in a Bicond nals that form this biconditional? and only if their product is 1.	itional
Got If? What Two num 17. Identify <i>p</i> <i>p</i> : 18. Write the of If then 19. Write the of	at are the two condition bers are reciprocals if a and q . conditional $p \rightarrow q$.	Conditionals in a Bicondianals that form this biconditional? and only if their product is 1.	itional
Got If? What Two num 17. Identify <i>p</i> <i>p</i> : 18. Write the of If then 19. Write the of	at are the two condition bers are reciprocals if a and q . conditional $p \rightarrow q$.	Conditionals in a Bicondianals that form this biconditional? and only if their product is 1.	itional

43

Problem 3 Writing a Definition as a Biconditional

	ЛЛ	
N		

45