3-3 Solve It!

3-3 Lesson Quiz

Use the figure to answer each question.

1. If $m \angle 1=42$, what must the measure of $\angle 7$ be in order to prove $a \| b$?
2. Do you UNDERSTAND? Suppose $m \angle 3=128$ and $m \angle 6=(10 x+8)$. What value of x would result in $a \| b$?
3. Which theorem or postulate would you use in Exercise 2 to prove that $a \| b$?

Use the figure for Questions 4 and 5.
4. If $g \| h$ and $m \angle 2=88$, what is $m \angle 3$?
5. If $v \| w$ and $m \angle 1=120$, what is $m \angle 2$?

Answers

Solve It!

Turn 1: 120°, turn 2: 120°, turn 3: 60°, turn 4: 60°, turn 5: 60°; explanations may vary. Sample: When a transversal intersects two || lines, the $\&$ formed are \cong
or suppl. If you know the measure of one of those $\stackrel{\varepsilon}{ }$, you can use the properties of || lines to find the measures of the other seven \mathbb{L}.

Lesson Quiz

1. 138
2. 12
3. Converse of the Alternate Interior Angles Theorem
4. 92
5. 60
