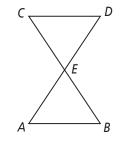

4-1 Solve It!



4-1 Lesson Quiz

- **1.** If $CDEF \cong KLMN$, what are the congruent corresponding parts?
- **2.** If $\triangle UVW \cong \triangle EFC$, what is the measure of $\angle FEC$?

3. Do you UNDERSTAND? Suppose it is given that $\angle C \cong \angle B$, $\angle D \cong \angle A$, $\overline{AE} \cong \overline{BE}$, and $\overline{CE} \cong \overline{DE}$. Does that prove that the triangles are congruent? Justify your answer.

Answers

Solve It!

Piece 1 fits in A, piece 2 in B, and piece 3 in C; explanations may vary. Sample: You can match up the parts that stick out with the parts that "go in" based on their size and location. Lesson Quiz

1. Sides: $\overline{CD} \cong \overline{KL}$, $\overline{DE} \cong \overline{LM}$, $\overline{EF} \cong \overline{MN}$, $\overline{CF} \cong \overline{KN}$; Angles: $\angle C \cong \angle K$, $\angle D \cong \angle L$, $\angle E \cong \angle M$, $\angle F \cong \angle N$

2. 51

 No, the two triangles have congruent angles but not necessarily congruent sides.

Prentice Hall Geometry • Solve It/Lesson Quiz on Transparencies Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.