

4-2 Lesson Quiz

1. What other information do you need to prove $\triangle GHK \cong \triangle KLG$ by SAS? Explain.

2. Do you UNDERSTAND? Would you use SSS or SAS to prove the triangles congruent? If there is not enough information to prove the triangles congruent by SSS or SAS, write *not enough information*. Explain your answer.

Answers

Solve It!

Answers may vary. Sample: Yes, $\triangle ABC \cong \triangle DEF$. $\angle B \cong \angle E$ (Given) and $\angle C \cong \angle F$ (All rt. $\underline{\&}$ are $\underline{\cong}$.). By the Third Angles Theorem, $\angle A \cong \angle D$. By the Distance Formula,

$$AB = DE = \sqrt{50}$$
, $BC = EF = 5$, and $AC = DF = 5$. So the two \triangle are \cong by def. of \cong \triangle .

Lesson Quiz

- **1.** $\angle HKG \cong \angle LGK$; if given that $\overline{HK} \parallel \overline{GL}$, these angles
- are alternate interior angles and must be congruent.
- **2.** SSS; 2 congruent sides are given and the 3rd side is congruent by the Reflexive Property of Congruence.