

4-6 Lesson Quiz

1. Are the triangles shown below congruent? Explain.

2. Do you UNDERSTAND?

Given: $\overline{ON}\cong\overline{ML},\overline{LP}\cong\overline{PN},$

 $\angle OPN$ is a right angle.

Prove: $\triangle OPN \cong \triangle MPL$

Answers

Solve It!

Yes; $\overline{AB} \cong \overline{CB}$ (Given). By the lsosc. \triangle Thm., $\angle A \cong \angle C$ and $\angle BDC \cong \angle BDA$ (All rt. \triangle are \cong .), so $\triangle ABD \cong \triangle CBD$ by AAS.

Lesson Quiz

- 1. yes, by the HL Theorem
- **2.** It is given that $\overline{ON} \cong \overline{ML}$, $\overline{LP} \cong \overline{PN}$, and $\angle OPN$ is a right angle. $\angle OPN \cong \angle LPM$ by Vertical Angles Theorem. $m\angle OPN = m\angle LPM$ by the def. of cong. angles.

 $m \angle OPN = 90$ by the def. of right angles. $m \angle LPM = 90$ by subst. $\angle LPM$ is a right angle by the def. of right angles. $\triangle OPN$ and $\triangle MPL$ are right triangles. So, $\triangle OPN \cong \triangle MPL$ by HL.