5-1
 Midsegments of Triangles

Vocabulary

Review

Use the number line at the right for Exercises 1-3.

1. Point is the midpoint of $\overline{A E}$.

2. Point is the midpoint of $\overline{C E}$.
3. Point is the midpoint of $\overline{A C}$.

Use the graph at the right for Exercises 4-6. Name each segment.
4. a segment that lies on the x-axis
5. a segment that contains the point $(0,4)$

6. a segment whose endpoints both have x-coordinate 3

Vocabulary Builder

midsegment (noun) MID seg munt
Related Words: midpoint, segment
Definition: A midsegment of a triangle is a segment connecting the midpoints of two sides of the triangle.

Use Your Vocabulary

Circle the correct statement in each pair.
7. A midsegment connects the midpoints of two sides of a triangle.

A midsegment connects a vertex of a triangle to the midpoint of the opposite side.
8. A triangle has exactly one midsegment. A triangle has three midsegments.

Theorem 5-1 Triangle Midsegment Theorem

If a segment joins the midpoints of two sides of a triangle, then the segment is parallel to the third side and is half as long.
9. Use the triangle at the right to complete the table below.

If	Then	
is the midpoint of $\overline{C A}$ and	$\\| \overline{A B}$	
is the midpoint of $\overline{C B}$	$=\frac{1}{2} A B$	

Use the graph at the right for Exercises 10-11.
10. Draw $\overline{R S}$. Then underline the correct word or number to complete each sentence below.
$\overline{R S}$ is a midsegment of / parallel to $\triangle A B C$.
$\overline{R S}$ is a midsegment of / parallel to $\overline{A C}$.
11. Use the Triangle Midsegment Theorem to complete.
 $R S=$ AC
12. Draw $\overline{S T}$. What do you know about $\overline{S T}$?

Problem 1 Identifying Parallel Segments

Got It? In $\triangle X Y Z, A$ is the midpoint of $\overline{X Y}, B$ is the midpoint of $\overline{Y Z}$, and C is the midpoint of $\overline{Z X}$. What are the three pairs of parallel segments?
13. Draw a diagram to illustrate the problem.
14. Write the segment parallel to each given segment.
$\overline{A B} \|$
$\overline{C B} \|$
$\overline{C A} \|$

Problem 2 Finding Lengths

Got It? In the figure below, $A D=6$ and $D E=7.5$. What are the lengths of $\overline{D C}$, $\overline{A C}, \overline{E F}$, and $\overline{A B}$?

15. Complete the problem-solving model below.

Plan

Use the Triangle
Midsegment Theorem to
find $D C, A C, E F$, and

16. The diagram shows that $\overline{E F}$ and $\overline{D E}$ join the midpoints of two sides of \triangle By the Triangle Midsegment Theorem, $E F=\frac{1}{2} . \quad$ and $D E=\frac{1}{2}$.

Complete each statement.

17. $D C=A D=$
18. $A C=A D+\quad=\quad=$
19. $E F=\quad \cdot A C=\quad \cdot \quad=6$
20. $C B=\quad \cdot D E=\quad \cdot \quad 15$

Problem 3 Using the Midsegment of a Triangle

Gof It? $\overline{C D}$ is a bridge being built over a lake, as shown in the figure at the right. What is the length of the bridge?
21. Complete the flow chart to find the length of the bridge.
$\overline{C D}$ joins the ? of two sides of a triangle.

$\overline{C D}$ is parallel to a side that is
ft .
22. The length of the bridge is
ft.

Lesson Check - Do you know HOW?

If $J K=5 x+20$ and $N O=20$, what is the value of x ?
Complete each statement.
23. is the midpoint of $\overline{L J}$.
24. is the midpoint of $\overline{L K}$.
25. $\overline{N O}$ is a ? of $\triangle J K L$, so $N O=\frac{1}{2} J K$.
26. Substitute the given information into the equation in Exercise 25
 and solve for x.

Lesson Check • Do you UNDERSTAND?

Reasoning If two noncollinear segments in the coordinate plane have slope 3, what can you conclude?
27. Place a \checkmark in the box if the response is correct. Place an X if it is incorrect.

If two segments in a plane are parallel, then they have the same slope.
If two segments lie on the same line, they are parallel.
28. Now answer the question.
\qquad
\qquad

Math Success

Check off the vocabulary words that you understand.
\square midsegmentmidpoint

Rate how well you can use properties of midsegments.

