

Polygons in the Coordinate Plane

Vocabulary

Review

1. Draw a line from each item in Column A to the corresponding part of the coordinate plane in Column B.

Column B

V

Х

Column A
origin
Quadrant I
Quadrant II
Quadrant III
Quadrant IV
<i>x</i> -axis
v-axis

Vocabulary Builder

<mark>classify</mark> (verb) KLAS uh fy	
Definition: To classify is to organize by category or type.	
Math Usage: You can classify figures by their properties.	
Related Words: classification (noun), classified (adjective)	
Example: Rectangles, squares, and rhombuses are classified as parallelogram	ns.
Use Your Vocabulary	
Complete each statement with the correct word from the list. Use each word o	nly

Com d only once.

classification classified classify

- **2.** Trapezoids are <u>?</u> as quadrilaterals.
- **3.** Taxonomy is a system of <u>?</u> in biology.
- **4.** Schools <u>?</u> children by age.

	Distance Formula	Midpoint Formula	Slope Formula		
Formula	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	$m = \frac{y_2 - y_1}{x_2 - x_1}$		
When to Use It	To determine whether • sides are congruent • diagonals are congruent	To determine • the coordinates of the midpoint of a side • whether diagonals bisect each other	To determine whether • opposite sides are parallel • diagonals are perpendicular • sides are perpendicular		
	 cide when to use each formula. Write D for Distance Formula, for Midpoint Formula, or S for Slope Formula. 5. You want to know whether diagonals bisect each other. 				
cide when for <i>Midpoin</i> 5. You wa	to use each formula. Write E <i>nt Formula,</i> or S for <i>Slope Fo</i> ant to know whether diagona) for <i>Distance Formula,</i> <i>rmula.</i> Is bisect each other.			

y

Problem 1 Classifying a Triangle

Got lt? $\triangle DEF$ has vertices D(0, 0), E(1, 4), and F(5, 2). Is $\triangle DEF$ scalene, isosceles, or equilateral?

8. Graph $\triangle DEF$ on the coordinate plane at the right.

Use the Distance Formula to find the length of each side.

12. What type of triangle is $\triangle DEF$? Explain.

Problem 2 Classifying a Parallelogram

Got lt? \square *MNPQ* has vertices *M*(0, 1), *N*(-1, 4), *P*(2, 5), and *Q*(3, 2). Is \square *MNPQ* a rectangle? Explain.

13. Find *MP* and *NQ* to determine whether the diagonals \overline{MP} and \overline{NQ} are congruent.

Problem 3 Classifying a Quadrilateral

15. Draw the trapezoid on the coordinate plane at the right.

V

18. To verify your answer to Exercise 17, find the slopes of the segments.

connecting midpoints of \overline{AB} and \overline{BC} :	connecting midpoints of \overline{BC} and \overline{CD} :
connecting midpoints of \overline{CD} and \overline{AD} :	connecting midpoints of \overline{AD} and \overline{AB} :
19. Are the slopes of opposite segments equa	l? Yes / No
20. Are consecutive segments perpendicular	? Yes / No
21. The special quadrilateral is a ? .	

173

 Need to review
 0
 2
 4
 6
 8
 10
 Now I get it!