6-7 Polygons in the Coordinate Plane

Vocabulary

Review

1. Draw a line from each item in Column A to the corresponding part of the coordinate plane in Column B.

Column A

origin
Quadrant I
Quadrant II
Quadrant III
Quadrant IV
x-axis
y-axis

Column B

Vocabulary Builder

classify (verb) KLas uh fy
Definition: To classify is to organize by category or type.
Math Usage: You can classify figures by their properties.
Related Words: classification (noun), classified (adjective)
Example: Rectangles, squares, and rhombuses are classified as parallelograms.

Use Your Vocabulary

Complete each statement with the correct word from the list. Use each word only once.

$$
\begin{array}{lll}
\text { classification } & \text { classified } & \text { classify }
\end{array}
$$

2. Trapezoids are ? as quadrilaterals.
3. Taxonomy is a system of ? in biology.
4. Schools \qquad ? children by age.
\qquad
\qquad
\qquad

	Distance Formula	Midpoint Formula	Slope Formula
Formula	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	$M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
When to Use It	To determine whether - sides are congruent - diagonals are congruent	To determine - the coordinates of the midpoint of a side - whether diagonals bisect each other	To determine whether - opposite sides are parallel - diagonals are perpendicular - sides are perpendicular

Decide when to use each formula. Write D for Distance Formula, M for Midpoint Formula, or S for Slope Formula.
\qquad 5. You want to know whether diagonals bisect each other.
\qquad 6. You want to find whether opposite sides of a quadrilateral are parallel.
\qquad 7. You want to know whether sides of a polygon are congruent.

Problem 1 Classifying a Triangle

Got It? $\triangle D E F$ has vertices $D(0,0), E(1,4)$, and $F(5,2)$. Is $\triangle D E F$ scalene, isosceles, or equilateral?
8. Graph $\triangle D E F$ on the coordinate plane at the right.

Use the Distance Formula to find the length of each side.
9. $E F=\sqrt{(5-\square)^{2}+(2-\square)^{2}}$
$=\sqrt{+}$
$=\sqrt{\square}$

10. $D E=\sqrt{(1-\quad)^{2}+(4-\square)^{2}}$
11. $D F=\sqrt{(5-\quad)^{2}+(2-\square)^{2}}$
$=\sqrt{+}$

$=\sqrt{+}$
$=\sqrt{\square}$
12. What type of triangle is $\triangle D E F$? Explain.

Problem 2 Classifying a Parallelogram

Got $I+$? $\square M N P Q$ has vertices $M(0,1), N(-1,4), P(2,5)$, and $Q(3,2)$. Is $\square M N P Q$ a rectangle? Explain.
13. Find $M P$ and $N Q$ to determine whether the diagonals $\overline{M P}$ and $\overline{N Q}$ are congruent.
$M P=\sqrt{(2-)^{2}+(5-\square)^{2}}$
$N Q=\sqrt{(3-)^{2}+(2-\square)^{2}}$
$=\sqrt{+}$
$=\sqrt{ }$
$=\sqrt{+}$
$=\sqrt{ }$
14. Is $\square M N P Q$ a rectangle? Explain.

Problem 3 Classifying a Quadrilateral

Got It ? An isosceles trapezoid has vertices $A(0,0), B(2,4), C(6,4)$, and $D(8,0)$. What special quadrilateral is formed by connecting the midpoints of the sides of $A B C D$?
15. Draw the trapezoid on the coordinate plane at the right.
16. Find the coordinates of the midpoints of each side.
$\overline{A B}$
$\left(\frac{0+}{2}, \frac{0+}{2}\right)=(, \quad)$

$\overline{C D}$
$\overline{B C}$

$$
\overline{A D}
$$

17. Draw the midpoints on the trapezoid and connect them. Judging by appearance, what type of special quadrilateral did you draw? Circle the most precise answer.
kite parallelogram rhombus trapezoid
18. To verify your answer to Exercise 17, find the slopes of the segments.
connecting midpoints of $\overline{A B}$ and $\overline{B C}$: connecting midpoints of $\overline{B C}$ and $\overline{C D}$:
connecting midpoints of $\overline{C D}$ and $\overline{A D}$: connecting midpoints of $\overline{A D}$ and $\overline{A B}$:
19. Are the slopes of opposite segments equal?
Yes / No
20. Are consecutive segments perpendicular?
Yes / No
21. The special quadrilateral is a ? .

Lesson Check - Do you UNDERSTAND?

Error Analysis A student says that the quadrilateral with vertices $D(1,2), E(0,7), F(5,6)$, and $G(7,0)$ is a rhombus because its diagonals are perpendicular. What is the student's error?
22. Draw $D E F G$ on the coordinate plane at the right.
23. Underline the correct words to complete Theorem 6-16.

If the diagonals of a parallelogram / polygon are perpendicular, then the parallelogram / polygon is a rhombus.

24. Check whether $D E F G$ is a parallelogram.
slope of $\overline{D E}: \frac{7-}{0-}=\quad$ slope of $\overline{F G}: \frac{0-}{7-}=$ slope of $\overline{D G}: \frac{0-}{7-}=\quad$ slope of $\overline{E F}: \frac{6-}{5-}=$
25. Are both pairs of opposite sides parallel?
26. Find the slope of diagonal $\overline{D F}$.
28. Are the diagonals perpendicular?
29. Explain the student's error.
Yes / No
27. Find the slope of diagonal $\overline{E G}$.

Yes / No
\qquad
\qquad

Math Success

Check off the vocabulary words that you understand.
distance
\square midpoint
slope
Rate how well you can classify quadrilaterals in the coordinate plane.

