7-2
 Similar Polygons

Vocabulary

Review

1. What does it mean when two segments are congruent?
\qquad
2. What does it mean when two angles are congruent?
\qquad
3. Measure each segment. Then circle the congruent segments.

- Vocabulary Builder

similar (adjective) SIM uh lur
Other Word Forms: similarity (noun), similarly (adverb)
Definition: Things that are similar are alike, but not identical.
Math Usage: Figures that have the same shape but not necessarily the same size are similar.

Use Your Vocabulary

4. How are the two squares at the right similar?
5. How are the two squares NOT similar?
\qquad

Key Concept Similar Polygons

Two polygons are similar polygons if corresponding angles are congruent and if the lengths of corresponding sides are proportional.
$A B C D \sim G H I J$. Draw a line from each angle in Column A to its corresponding angle in Column B.

Column A

6. $\angle A$
7. $\angle B$
8. $\angle C$
9. $\angle D$

Column B

$\angle H$
$\angle J$
$\angle G$
$\angle I$

10. Complete the extended proportion to show that corresponding sides of $A B C D$ and GHIJ are proportional.

$$
\frac{A B}{G H}=\frac{B C}{I J}=\frac{}{I D}
$$

Problem 1 Understanding Similarity

Got It? DEFG $\sim H J K L$. What are the pairs of congruent angles? What is the extended proportion for the ratios of the lengths of corresponding sides?
11. Complete each congruence statement.
$\angle D \cong \angle$
$\angle E \cong \angle$
$\angle K \cong \angle$
$\angle L \cong \angle$
12. Complete the extended proportion.

$$
\frac{D E}{H J}=\frac{E F}{K L}=\frac{}{K}
$$

A scale factor is the ratio of the lengths of corresponding sides of similar triangles.

Problem 2 Determining Similarity

Got It? Are the polygons similar? If they are, write a similarity statement and give the scale factor.
13. Circle the short sides of each rectangle. Underline the long sides.
$\begin{array}{llll}\overline{K L} & \overline{L M} & \overline{M N} & \overline{N K}\end{array}$
$\overline{W X}$
$\overline{X Y}$
$\overline{Y Z}$
$\overline{Z W}$
14. Write the ratios of corresponding sides in simplest form.

$$
\frac{K L}{X Y}=\frac{10}{15}=\square \quad \frac{L M}{Y Z}=\frac{15}{\square}=\square \quad \frac{M N}{Z W}=\frac{}{15}=\square \quad \frac{N K}{W X}=\square=\square
$$

15. Place a \checkmark in the box if the statement is correct. Place an X if it is incorrect.
$K L M N \sim X Y Z W$ and the scale factor is $\frac{2}{3}$.
$K L M N \sim X Y Z W$ and the scale factor is $\frac{3}{4}$.
The polygons are not similar.

Problem 3 Using Similar Polygons

Got It? $A B C D \sim E F G D$. What is the value of y ?
16. Circle the side of $A B C D$ that corresponds to $\overline{E F}$.

$\overline{A B}$	$\overline{B C}$	$\overline{C D}$	$\overline{A D}$

17. Use the justifications at the right to find the value of y.

$\underline{E F}=\frac{E D}{A D}$
Corresponding sides of similar polygons are proportional.
$\underline{y}=\frac{6}{9}$
Substitute.
$\begin{array}{ll}9 y= & \text { Cross Products Property } \\ y= & \text { Divide each side by } 9 .\end{array}$

Problem 4 Using Similarity

Got It? A rectangular poster's design is 6 in . high by 10 in . wide. What are the dimensions of the largest complete poster that will fit in a space 3 ft high by 4 ft wide?
18. Determine how many times the design can be enlarged.

Height: $3 \mathrm{ft}=\quad$ in. Width: $4 \mathrm{ft}=\quad$ in.

$$
\text { in. } \div 6 \text { in. }=6
$$

$$
\text { in. } \div 10 \text { in. }=4.8
$$

The design can be enlarged at most times.
19. Let x represent the height of the poster. Write a proportion and solve for x.
20. The largest complete poster that will fit is
in. by
in.

Problem 5 Using a Scale Drawing

Got It? Use the scale drawing of the bridge. What is the actual height of the towers above the roadway?
21. Use a centimeter ruler to measure the height of the towers above the roadway in the scale drawing. Label the drawing with the height.

Scale 1 cm : 200 m
22. Identify the variable.

Let $h=$ the ? of the towers.
23. Use the information on the scale drawing to write a proportion. Then solve to find the value of the variable.
(Hint: $\frac{1}{200}=\frac{\text { tower height in drawing (cm) }}{\text { actual height (m) }}$)
24. The actual height of the towers above the roadway is
m.

Lesson Check - Do you UNDERSTAND?

The triangles at the right are similar. What are three similarity statements for the triangles?
25. The triangles are \triangle and \triangle
26. $\angle A \cong \angle$

$$
\angle B \cong \angle
$$

$$
\angle S \cong \angle
$$

27. $\triangle A B S \sim$

$$
\triangle B S A \sim
$$

$\triangle S A B \sim$

Math Success

Check off the vocabulary words that you understand.similarextended proportionscale factorscale drawing

Rate how well you can identify and apply similar polygons.

