## 8-1 <br> The Pythagorean Theorem and Its Converse

## Vocabulary

## Review

1. Write the square and the positive square root of each number.

| Number | Square | Positive Square Root |
| :---: | :---: | :---: |
| 9 |  |  |
| $\frac{1}{4}$ | $\frac{1}{16}$ |  |

## - Vocabulary Builder

> leg (noun) leg

Related Word: hypotenuse
Definition: In a right triangle, the sides that form the right angle are the legs.

Main Idea: The legs of a right triangle are perpendicular. The hypotenuse is the side opposite the right angle.

## Use Your Vocabulary

2. Underline the correct word to complete the sentence.

The hypotenuse is the longest / shortest side in a right triangle.
Write T for true or F for false.
$\qquad$ 3. The hypotenuse of a right triangle can be any one of the three sides.
4. One leg of the triangle at the right has length 9 cm .

$\qquad$ 5. The hypotenuse of the triangle at the right has length 15 cm .

## Theorems 8-1 and 8-2 Pythagorean Theorem and Its Converse

Pythagorean Theorem If a triangle is a right triangle, then the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

If $\triangle A B C$ is a right triangle, then $a^{2}+b^{2}=c^{2}$.


Converse of the Pythagorean Theorem If the sum of the squares of the lengths of two sides of a triangle is equal to the square of the length of the third side, then the triangle is a right triangle.

If $a^{2}+b^{2}=c^{2}$, then $\triangle A B C$ is a right triangle.
6. Circle the equation that shows the correct relationship among the lengths of the legs and the hypotenuse of a right triangle.

$$
13^{2}+5^{2}=12^{2} \quad 5^{2}+12^{2}=13^{2} \quad 12^{2}+13^{2}=5^{2}
$$

## Underline the correct words to complete each sentence.

7. A triangle with side lengths 3,4 , and 5 is / is not a right triangle because $3^{2}+4^{2}$ is equal / not equal to $5^{2}$.
8. A triangle with side lengths 4,5 , and 6 is / is not a right triangle because $4^{2}+5^{2}$ is equal / not equal to $6^{2}$.

## Problem 1 Finding the Length of the Hypotenuse

Got It? The legs of a right triangle have lengths 10 and 24 . What is the length of the hypotenuse?
9. Label the triangle at the right.
10. Use the justifications below to find the length of the hypotenuse.


$$
\begin{array}{rlrl}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean Theorem } \\
{ }^{2}+ & 2 & =c^{2} & \\
+ & & \text { Substitute for } a \text { and } b . \\
+ & =c^{2} & & \text { Simplify. } \\
& =c^{2} & & \text { Add. } \\
& =c & & \text { Take the positive square root. }
\end{array}
$$

11. The length of the hypotenuse is
12. One Pythagorean triple is 5,12 , and 13 . If you multiply each number by 2 , what numbers result? How do the numbers that result compare to the lengths of the sides of the triangle in Exercises 9-11?

## Problem 3 Finding Distance

Got lt? The size of a computer monitor is the length of its diagonal. You want to buy a $19-\mathrm{in}$. monitor that has a height of 11 in . What is the width of the monitor? Round to the nearest tenth of an inch.
13. Label the diagram of the computer monitor at the right.

in.
14. The equation is solved below. Write a justification for each step.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
11^{2}+b^{2} & =19^{2} \\
121+b^{2} & =361 \\
121-121+b^{2} & =361-121 \\
b^{2} & =240 \\
b & =\sqrt{240} \\
b & \approx 15.49193338
\end{aligned}
$$

$\qquad$
$\square$
$\square$
$\square$
$\qquad$
$\qquad$
15. To the nearest tenth of an inch, the width of the monitor is in.

## Problem 4 Identifying a Right Triangle

Got It? A triangle has side lengths 16, 48, and 50. Is the triangle a right triangle? Explain.
16. Circle the equation you will use to determine whether the triangle is a right triangle.

$$
16^{2}+48^{2} \stackrel{?}{=} 50^{2} \quad 16^{2}+50^{2} \stackrel{?}{=} 48^{2} \quad 48^{2}+50^{2} \stackrel{?}{=} 16^{2}
$$

17. Simplify your equation from Exercise 16.

A Pythagorean triple is a set of nonzero whole numbers $a, b$, and $c$ that satisfy the equation $a^{2}+b^{2}=c^{2}$. If you multiply each number in a Pythagorean triple by the same whole number, the three numbers that result also form a Pythagorean triple.

## Theorems 8-3 and 8-4 Pythagorean Inequality Theorems

Theorem 8-3 If the square of the length of the longest side of a triangle is greater than the sum of the squares of the lengths of the other two sides, then the triangle is obtuse.

Theorem 8-4 If the square of the length of the longest side of a triangle is less than the sum of the squares of the lengths of the other two sides, then the triangle is acute.

Use the figures at the right. Complete each sentence with acute or obtuse.
19. In $\triangle A B C, c^{2}>a^{2}+b^{2}$, so $\triangle A B C$ is ?.
20. In $\triangle R S T, s^{2}<r^{2}+t^{2}$, so $\triangle R S T$ is $\xrightarrow{?}$.

$\qquad$


## Lesson Check • Do you UNDERSTAND?

Error Analysis A triangle has side lengths 16, 34, and 30. Your friend says it is not a right triangle. Look at your friend's work and describe the error.
21. Underline the length that your friend used as the longest side. Circle
 the length of the longest side of the triangle.
22. Write the comparison that your friend should have used to determine whether the triangle is a right triangle.
23. Describe the error in your friend's work.

## Math Success

Check off the vocabulary words that you understand.
hypotenuselegPythagorean TheoremPythagorean triple
Rate how well you can use the Pythagorean Theorem and its converse.


