8-2
 Special Right Triangles

Vocabulary

Review

1. Circle the segment that is a diagonal of square $A B C D$.
$\overline{A B}$
$\overline{A C}$
$\overline{A D}$
$\overline{B C}$
$\overline{C D}$
2. Underline the correct word to complete the sentence.

A diagonal is a line segment that joins two sides / vertices of a polygon.

- Vocabulary Builder

complement (noun) канм pluh munt
Other Word Form: complementary (adjective)
Math Usage: When the measures of two angles have a sum of 90 , each angle is a complement of the other.

Nonexample: Two angles whose measures sum to 180 are supplementary.

Use Your Vocabulary

Complete each statement with the word complement or complementary.
3. If $m \angle A=40$ and $m \angle B=50$, the angles are ?. \qquad
4. If $m \angle A=30$ and $m \angle B=60, \angle B$ is the \qquad of $\angle A$.
5. $\angle P$ and $\angle Q$ are ? because the sum of their measures is 90 .

In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, both legs are congruent and the length of the hypotenuse is $\sqrt{2}$ times the length of a leg.

Complete each statement for a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.

10. hypotenuse $=$ - leg
11. If leg $=10$, then hypotenuse $=$

Problem 1 Finding the Length of the Hypotenuse

Got It? What is the length of the hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with leg length $5 \sqrt{3}$?
12. Use the justifications to find the length of the hypotenuse.

$$
\begin{aligned}
\text { hypotenuse } & =\quad \cdot \text { leg } & & 45^{\circ}-45^{\circ}-90^{\circ} \text { Triangle Theorem } \\
& =\sqrt{2} \cdot & & \text { Substitute. } \\
& =\quad \cdot & & \text { Commutative Property of Multiplication. } \\
& = & & \text { Simplify. }
\end{aligned}
$$

Problem 2 Finding the Length of a Leg

Got lt? The length of the hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is 10 . What is the length of one leg?
13. Will the length of the leg be greater than or less than 10? Explain.
14. Use the justifications to find the length of one leg.

$$
\begin{aligned}
\text { hypotenuse } & =\sqrt{2} \cdot \text { leg } & & 45^{\circ}-45^{\circ}-90^{\circ} \text { Triangle Theorem } \\
& =\sqrt{2} \cdot \text { leg } & & \text { Substitute. } \\
\frac{l}{\sqrt{2}} & =\frac{\sqrt{2}}{\sqrt{2}} \cdot \text { leg } & & \text { Divide each side by } \sqrt{2} . \\
\text { leg } & =\frac{}{\sqrt{2}} & & \text { Simplify. } \\
\text { leg } & =\frac{\sqrt{2}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{l e g} & & \text { Multiply by a form of } 1 \text { to rationalize the denominator. } \\
\text { leg } & =\frac{\text { Simplify. }}{2} & &
\end{aligned}
$$

Problem 3 Finding Distance

Got It? You plan to build a path along one diagonal of a 100 ft -by-
100 ft square garden. To the nearest foot, how long will the path be?
15. Use the words path, height, and width to complete the diagram.
16. Write L for leg or H for hypotenuse to identify each part of the right triangle in the diagram.

path
height width
17. Substitute for hypotenuse and leg. Let $h=$ the length of the hypotenuse.

$$
\begin{aligned}
\text { hypotenuse } & =\sqrt{2} \cdot \text { leg } \\
& =\sqrt{2} \cdot
\end{aligned}
$$

18. Solve the equation. Use a calculator to find the length of the path.
19. To the nearest foot, the length of the path will be feet.

In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the length of the hypotenuse is twice the length of the shorter leg. The length of the longer leg is $\sqrt{3}$ times the length of the shorter leg.

Complete each statement for a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
20. hypotenuse $=$

- shorter leg

21. longer leg $=$

- shorter leg

Problem 5 Applying the $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem

Got It? Jewelry Making An artisan makes pendants in the shape of equilateral triangles. Suppose the sides of a pendant are 18 mm long. What is the height of the pendant to the nearest tenth of a millimeter?
23. Circle the formula you can use to find the height of the pendant.

$$
\text { hypotenuse }=2 \cdot \text { shorter leg } \quad \text { longer leg }=\sqrt{3} \cdot \text { shorter leg }
$$

24. Find the height of the pendant.
25. To the nearest tenth of a millimeter, the height of the pendant is mm.

Lesson Check • Do you UNDERSTAND?

Reasoning A test question asks you to find two side lengths of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.
You know that the length of one leg is 6, but you forgot the special formula for $45^{\circ}-45^{\circ}-90^{\circ}$ triangles. Explain how you can still determine the other side lengths. What are the other side lengths?
26. Underline the correct word(s) to complete the sentence. In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the lengths of the legs are different / the same .
27. Use the Pythagorean Theorem to find the length of the longest side.
28. The other two side lengths are and

Math Success

Check off the vocabulary words that you understand.
hypotenuseright trianglePythagorean Theorem
Rate how well you can use the properties of special right triangles.

