Special Right Triangles

Copyright © by Pearson Education, Inc. or its affiliates. All Rights Reserved

206

207

Problem 3 Finding Distance

shorter leg $\frac{5\sqrt{3}}{3}$ of the 30°-60°-90° triangle.

Now I can solve for f.

f =

f =

208

Copyright @ by Pearson Education, Inc. or its affiliates. All Rights Reserved.

Problem 5 Applying the 30°-60°-90° Triangle Theorem

Got lt? Jewelry Making An artisan makes pendants in the shape of equilateral triangles. Suppose the sides of a pendant are 18 mm long. What is the height of the pendant to the nearest tenth of a millimeter? **23.** Circle the formula you can use to find the height of the pendant. hypotenuse = $2 \cdot \text{shorter leg}$ longer leg = $\sqrt{3} \cdot \text{shorter leg}$ **24.** Find the height of the pendant.

25. To the nearest tenth of a millimeter, the height of the pendant is

Lesson Check • Do you UNDERSTAND?

Reasoning A test question asks you to find two side lengths of a 45°-45°-90° triangle. You know that the length of one leg is 6, but you forgot the special formula for 45°-45°-90° triangles. Explain how you can still determine the other side lengths. What are the other side lengths?

26. Underline the correct word(s) to complete the sentence. In a 45°-45°-90° triangle, the lengths of the legs are different / the same.

and

27. Use the Pythagorean Theorem to find the length of the longest side.

28. The other two side lengths are

🥖 Mai	th Success		
Check off the vocabulary words that you understand.			
leg	hypotenuse	right triangle	Pythagorean Theorem
Rate how well you can use the properties of special right triangles.			
Need to review		8 10 Now I get it!	

18 mm

mm.