9-2

Reflections

Vocabulary

Review

1. Circle the translation rule that shows a mapping 2 units left and 1 unit up.

Underline the translation rule that shows a mapping 2 units right and 1 unit down.

$$
(x, y) \rightarrow(x-2, y+1) \quad(x, y) \rightarrow(x+2, y-1) \quad(x, y) \rightarrow(x-2, y-1)
$$

Vocabulary Builder

reflection (noun) rih flek shun
Related Words: line of reflection
Definition: A reflection is a mirror image of an object that has the same size and shape but an opposite orientation.

Math Usage: A reflection is a transformation where each point on the preimage is the same distance from the line of reflection as its reflection image.

Use Your Vocabulary

Write T for true or F for false.
\qquad 2. A reflection is the same shape as the original figure.
3. A reflection makes a figure larger.

Reflection across a line r, called the line of reflection, is a transformation with these two properties:

- If a point A is on line r, then the image of A is itself (that is, $A^{\prime}=A$).
- If a point B is not on line r, then r is the perpendicular bisector of $\overline{B B^{\prime}}$.

A reflection across a line is an isometry.

The preimage B and its image B^{\prime} are equidistant from the line of reflection.
4. Line is the perpendicular bisector of $\overline{C C^{\prime}}$.

Problem 1 Reflecting a Point Across a Line

Got It? What is the image of $P(3,4)$ reflected across the line $x=-1$?
5. Graph P on the coordinate plane at the right.
6. Describe the line of reflection. Then graph the line of reflection.
\qquad
\qquad
7. The distance from point P to the line of reflection is units.

Underline the correct word(s) to complete each sentence.

8. The x-coordinates of P and P^{\prime} are different/ the same .
9. The y-coordinates of P and P^{\prime} are different / the same .
10. Point P is reflected to the left / right across the line of reflection.
11. Graph the image of $P(3,4)$ and label it P^{\prime}.
12. The coordinates of P^{\prime} are (
).

Problem 2 Graphing a Reflection Image

Got lt? Graph points $A(-3,4), B(0,1)$, and $C(4,2)$. What is the image of $\triangle A B C$ reflected across the x-axis?
13. The x-axis is the line $y=$
14. Circle the distance in units from point A to the x-axis. Underline the distance from point B to the x-axis. Put a square around the distance from point C to the x-axis.
0
1
2
3
4
15. Point B^{\prime} is unit(s) below the x-axis.
16. Point C^{\prime} is unit(s) below the x-axis.
17. The arrow shows how to find vertex A^{\prime}. Graph the image of $\triangle A B C$ and label vertices B^{\prime} and C^{\prime} on the coordinate plane below.

Problem 3 Minimizing a Distance

Got It? Reasoning The diagram shows one solution of the problem below. Your classmate began to solve the problem by reflecting point R across line t. Will her method work? Explain.

Beginning from a point on Summit Trail (line t), a hiking club will build a trail to the Overlook (point O) and a trail to Balance Rock (point R). The club
 members want to minimize the total length of the two trails. How can you find the point on Summit Trail where the two new trails should start?

You need to find the point P on line t such that the distance $O P+P R$ is as small as possible. In the diagram, the problem was solved by locating O^{\prime}, the reflection image of O across t. Because t is the perpendicular bisector of $\overline{O O^{\prime}}, P O=P O^{\prime}$, and $O P+P R=O^{\prime} P+P R$. By the Triangle Inequality Theorem, the sum $O^{\prime} P+P R$ is least when R, P, and O^{\prime} are collinear. So, the trails should start at the point P where $\overline{R O^{\prime}}$ intersects line t.
Place $\mathrm{a} \checkmark$ in the box if the response is correct. Place an X if it is incorrect.
18. When point R is reflected across line t, t is the perpendicular bisector of $\overline{R R^{\prime}}$.
19. $P R \neq P R^{\prime}$
20. $R P+P O=R^{\prime} P+P O$
21. Points O, P and R^{\prime} are NOT collinear.
22. The trails should start at the point P where $\overline{O R^{\prime}}$ intersects t.
23. Reflect R across line t in the diagram at the right. Label the reflection R^{\prime}.
24. Draw $\overline{R R^{\prime}}$.
25. Draw $\overline{R^{\prime} O}$.
26. Label the point where $\overline{R^{\prime} O}$ intersects line t as point P. Draw $\overline{P R}$.
27. What do you notice about point P after
 reflecting R across line t ?
\qquad
\qquad
28. Will your classmate's method work? Explain.

Lesson Check - Do you UNDERSTAND?

What are the coordinates of a point $P(x, y)$ reflected across the y-axis? Across the x-axis?
29. Reflect point P across the y-axis. Label the image P^{\prime}.
30. Circle the coordinates of point P.
$(3,1)$
$(-3,-1)$
$(-3,1)$
$(3,-1)$
31. Circle the coordinates of point P^{\prime}.
$(3,1)$
$(-3,-1)$
$(-3,1)$
$(3,-1)$
32. Describe how the coordinates of P^{\prime} are different from the
 coordinates of P.
\qquad
\qquad
33. Reflect point P across the x-axis. Label the image $P^{\prime \prime}$. The coordinates of $P^{\prime \prime}$ $\operatorname{are}($,
34. Describe how the coordinates of $P^{\prime \prime}$ are different from the coordinates of P.
35. Complete the model below to find the coordinates of $P(x, y)$ reflected across the y-axis and across the x-axis.

Math Success

Check off the vocabulary words that you understand.
reflectionline of reflection
Rate how well you can find reflection images offigures.

