

Compositions of Reflections

Vocabulary

Review

Write T for true or F for false.

- **1.** A *reflection* flips a figure across a line of *reflection*.
- **2.** A *reflection* turns a figure about a point.
- **3.** A *reflection* preimage and image are congruent.
- **4.** The orientation of a figure reverses after a *reflection*.
- **5.** A line of *reflection* is either horizontal or vertical.

Vocabulary Builder

composition (noun) kahm puh zısн un

Other Word Forms: compose (verb), composite (adjective), composite (noun)

Definition: A **composition** combines parts.

Math Usage: A **composition** of transformations combines two or more transformations in a given order.

Use Your Vocabulary

Complete each statement with the appropriate word from the list. Use each word only once.

reflections rotation symmetry

6. A *composition* of reflections has at least one line of <u>?</u>.

7. You can map any congruent figure onto another using a *composition* of <u>?</u>.

8. A *composition* of rotations is always a <u>?</u>.

Problem 1 Composing Reflections Across Parallel Lines

Got lt? Lines ℓ and *m* are parallel. R is between ℓ and *m*. What is the image of R reflected first across line ℓ and then across line *m*? What are the direction and distance of the resulting translation?

- **9.** The diagram shows a dashed line perpendicular to ℓ and *m* that intersects ℓ at point *A*, *m* at point *B*, and R only at point *P*. Complete each step to show the composition of the reflections.
 - **Step 1** Reflect R across line ℓ . Point *P*' should correspond to point *P*.
 - Step 2 Reflect the image across line *m*. Point *P*["] should correspond to point *P*['].
- **10.** Underline the correct word to complete each sentence.

The translation is to the right / left along the dashed line.

The direction of the translation is parallel / perpendicular to lines ℓ and m.

11. Use the justifications at the right to find the distance *PP*["] of the resulting translation.

12. The resulting translation moved R a distance of

Theorem 9-3 Fundamental Theorem of Isometries

In a plane, one of two congruent figures can be mapped onto the other by a composition of at most three reflections.

13. Underline the correct word to complete the sentence.

ke not

If two congruent figures in a plane have opposite orientations, an even / odd number of reflections maps one figure onto the other.

Problem 3 Finding a Glide Reflection Image

Got It? What is the image of $\triangle TEX$ for a glide reflection where the translation is $(x, y) \rightarrow (x + 1, y)$ and the line of reflection is y = -2?

Use the coordinate plane at the right for Exercises 14-17.

14. Find the vertices of the translation image. Then graph the translation image.

$T(-5,2) \rightarrow (-5 +$,) = (,)
$E(-1,3) \rightarrow (-1 +$,) = (,)
$X(-2,1) \rightarrow (-2 +$,) = (,)

15. In a reflection across a horizontal line,

only the -coordinate changes.

V

Ē

2

16. Find the vertices of the triangle you graphed in Exercise 14 after reflection across

the line
$$y = -2$$
.
(,,) $\rightarrow T'$ (,)
(,) $\rightarrow E'$ (,)

~

 $) \rightarrow X'($

. 1

17. The image of \triangle *TEX* for the given glide reflection is the triangle with vertices

T'(), and X' (). Graph $\triangle T'E'X'$.), E'(

244

Lesson Check • Do you UNDERSTAND?

Error Analysis You reflect $\triangle DEF$ first across line *m* and then across line *n*. Your friend says you can get the same result by reflecting $\triangle DEF$ first across line *n* and then across line *m*. Explain your friend's error. **21.** Place a \checkmark in the box if the response is correct. Place an \checkmark if it is incorrect. Lines *m* and *n* are perpendicular.

glide reflection

245

22. Explain your friend's error.

Math Success

composition of reflections

2

0

Need to

review

Check off the vocabulary words that you understand.

Rate how well you can find compositions of reflections.

Δ

6

isometry