$9-6$
 Compositions of Reflections

Vocabulary

Review

Write T for true or F for false.

1. A reflection flips a figure across a line of reflection.
2. A reflection turns a figure about a point.
\qquad 3. A reflection preimage and image are congruent.
3. The orientation of a figure reverses after a reflection.
\qquad 5. A line of reflection is either horizontal or vertical.

Vocabulary Builder

composition (noun) kahm puh ZISH un
Other Word Forms: compose (verb), composite (adjective), composite (noun)
Definition: A composition combines parts.
Math Usage: A composition of transformations combines two or more transformations in a given order.

Use Your Vocabulary

Complete each statement with the appropriate word from the list. Use each word only once.
reflections rotation symmetry
6. A composition of reflections has at least one line of ?
7. You can map any congruent figure onto another using a composition of ? ?.
\qquad
\qquad
8. A composition of rotations is always a ? .

Theorem 9-1 and Theorem 9-2

Theorem 9-1 A translation or rotation is a composition of two reflections.

Theorem 9-2

A composition of reflections across parallel lines is a translation.

A composition of reflections across two intersecting lines is a rotation.

Problem 1 Composing Reflections Across Parallel Lines

Gof $1+$? Lines ℓ and m are parallel. R is between ℓ and m. What is the image of R reflected first across line ℓ and then across line m ? What are the direction and distance of the resulting translation?
9. The diagram shows a dashed line perpendicular to ℓ and m that intersects ℓ at point A, m at point B, and R only at point P. Complete each step to show the composition of the reflections.

Step 1 Reflect R across line ℓ. Point P^{\prime} should correspond to point P.

Step 2 Reflect the image across line m.
 Point $P^{\prime \prime}$ should correspond to point P^{\prime}.
10. Underline the correct word to complete each sentence.

The translation is to the right / left along the dashed line.
The direction of the translation is parallel / perpendicular to lines ℓ and m.
11. Use the justifications at the right to find the distance $P P^{\prime \prime}$ of the resulting translation.

$$
\begin{array}{rlrl}
P P^{\prime \prime} & = & & +B P^{\prime \prime} \\
& = & & \text { Segment Addition Postulate } \\
& = & & +\left(B P^{\prime}\right. \\
& = & & \text { Definition of reflection across line } m \\
& =\quad B P+2 P A & & \text { Segment Addition Postulate } \\
& =B P+2 P A & & \text { Definition of reflection across line } \ell \\
& =(B P+P A) & & \text { Simplify. } \\
& \cdot & \text { Use the Distributive Property. } \\
& & \text { Segment Addition Postulate }
\end{array}
$$

12. The resulting translation moved R a distance of

Theorem 9-3 Fundamental Theorem of Isometries

In a plane, one of two congruent figures can be mapped onto the other by a composition of at most three reflections.
13. Underline the correct word to complete the sentence.

If two congruent figures in a plane have opposite orientations, an even / odd number of reflections maps one figure onto the other.

Problem 3 Finding a Glide Reflection Image

Got $1+$? What is the image of $\triangle T E X$ for a glide reflection where the translation is $(x, y) \rightarrow(x+1, y)$ and the line of reflection is $y=-2$?

Use the coordinate plane at the right for Exercises 14-17.
14. Find the vertices of the translation image. Then graph the translation image.

$$
\left.\begin{array}{lll}
T(-5,2) \rightarrow(-5+ & , &)=(\quad,
\end{array}\right)
$$

15. In a reflection across a horizontal line,
 only the -coordinate changes.
16. Find the vertices of the triangle you graphed in Exercise 14 after reflection across the line $y=-2$.
$(\quad, \quad) \rightarrow T^{\prime}(\quad)$
$(\quad, \quad) \rightarrow E^{\prime}(\quad, \quad)$
$(\quad, \quad) \rightarrow X^{\prime}(\quad, \quad)$
17. The image of $\triangle T E X$ for the given glide reflection is the triangle with vertices
$T^{\prime}($
), $E^{\prime}($
), and $X^{\prime}($
). Graph $\triangle T^{\prime} E^{\prime} X^{\prime}$.

Theorem 9-4 Isometry Classification Theorem

There are only four isometries.

Translation	Rotation	Reflection
Orientations are the same.	\mathbf{R}	Orientations are opposite.

Problem 4 Classifying Isometries

Got It? Each figure is an isometry image of the figure at the right. Are the orientations of the preimage and image the same or opposite? What type of isometry maps the preimage to the image?

B.

C.

Choose the correct words from the list to complete each sentence.
18. Image A has the ? orientation and is a ? .

```
opposite
same
translation
rotation
reflection
glide reflection
```


Lesson Check - Do you UNDERSTAND?

Error Analysis You reflect $\triangle D E F$ first across line m and then across
line n. Your friend says you can get the same result by reflecting $\triangle D E F$ first across line n and then across line m. Explain your friend's error.
21. Place a \checkmark in the box if the response is correct. Place an X if it is incorrect.

Lines m and n are perpendicular.
A clockwise or counterclockwise rotation has the same image.

22. Explain your friend's error.

Math Success

Check off the vocabulary words that you understand.
composition of reflections
glide reflectionisometry
Rate how well you can find compositions of reflections.

