\qquad
\qquad
\qquad

Extra Practice

Chapter 4

Lesson 4-1

$\Delta S A T \cong \triangle G R E$. Complete each congruence statement.

1. $\angle S \cong$? $\angle G$
2. $\overline{G R} \cong$?
$\overline{S A}$
3. $\angle E \cong$? $\angle T$
4. $\overline{A T} \cong$? $\overline{R E}$
5. $\triangle E R G \cong$? $\triangle T A S$
6. $\overline{E G} \cong$? $\overline{T S}$
7. $\triangle R E G \cong$? $\triangle A T S$
8. $\angle R \cong$? $\angle A$

State whether the figures are congruent. Justify your answers.
9. $\triangle A B F ; \triangle E D C$

11. $\square X Y Z V ; \square U T Z V$

Yes; corr. sides and corr. ¿s are \cong.
10. $\triangle T U V ; \triangle U V W$

Lessons 4-2 and 4-3

Can you prove the two triangles congruent? If so, write the congruence statement and name the postulate you would use. If not, write not possible and tell what other information you would need.
13.

14.

$$
\overline{E A} \cong \overline{P L}, \overline{A L} \cong \overline{L A},
$$ $\angle E A L \cong \angle P L A ; S A S$

15.

16.

$$
\frac{\angle T}{T Y} \cong \angle S, \angle Y \cong \angle W,
$$

Yes; corr. sides and corr. \& are \cong.
12. $\triangle A B D ; \triangle E D B$

\qquad
\qquad Date \qquad

Extra Practice (continued)

Chapter 4

17. Given: $\overline{P X} \cong \overline{P Y}, \overline{Z P}$ bisects $\overline{X Y}$.

Prove: $\triangle P X Z \cong \triangle P Y Z$

$\overline{Z P}$ bisects $\overline{X Y}$ means that $\overline{X M} \cong \overline{Y M}$. It is given that $\overline{P X} \cong \overline{P Y}$, and $\overline{P M} \cong \overline{P M}$ by the Refl. Prop. of \cong. Thus, $\triangle P X M \cong \triangle P Y M$ by SSS and
$\angle X P M \cong \angle Y P M$ by Def. of $\cong . \overline{P Z} \cong \overline{P Z}$ by the Refl. Prop. of \cong, so $\triangle P X Z \cong \triangle P Y Z$ by SAS.
19. Given: $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4, \overline{A P} \cong \overline{D P}$

Prove: $\triangle A B P \cong \triangle D C P$
 $\angle 1 \cong \angle 2$ is given. $\angle A B P \cong \angle D C P$ by the \cong Suppls. Thm. $\angle 3 \cong \angle 4$ and $\overline{A P} \cong \overline{D P}$ are given. $\triangle A B P \cong \triangle D C P$ by AAS.

Lesson 4-4

21. Given: $\overline{L O} \cong \overline{M N}, \overleftrightarrow{L O} \| \overleftrightarrow{M N}$

Prove: $\angle M L N \cong \angle O N L$

$\overleftrightarrow{O L} \| \overleftrightarrow{M N}$, so $\angle O L N \cong \angle M N L$. $\overline{L N} \cong \overline{L N}$ by the Reflexive Prop. of \cong.
Since $\overline{L O} \cong \overline{M N}, \triangle M L N \cong \triangle O N L$ by SAS, and $\angle M L N \cong \angle O N L$ by CPCTC.
23. Given: $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$,
M is the midpoint of $\overline{P R}$
Prove: $\triangle P M Q \cong \triangle R M Q$
 $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$ (both given), and $\overline{S Q} \cong \overline{S Q}$ (Refl. Prop. of \cong) mean that $\triangle P Q S \cong \triangle R Q S$
by AAS, and $\overline{P Q} \cong \overline{R Q}$ by CPCTC. Point M is the midpoint of $\overline{P R}$, so $\overline{P M} \cong \overline{R M}$. Also, $\overline{Q M} \cong \overline{Q M}$ by the Refl. Prop. of \cong, so $\triangle P Q M \cong \triangle R Q M$ by SSS. $\angle P M Q \cong \angle R M Q$ by CPCTC.
18. Given: $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4, \overline{P D} \cong \overline{P C}$,
P is the midpoint of $\overline{A B}$. It is given that Prove: $\triangle A D P \cong \triangle B C P$
 $m \angle 1=m \angle 2$ and $m \angle 3=m \angle 4$. By the \angle Add. Post., $m \angle D P A=m \angle C P B$. Since P is the midpt. of $\overline{A B}, \overline{P A} \cong \overline{P B}$. It is given that $\overline{P D} \cong \overline{P C}$, so $\triangle A D P \cong \triangle B C P$ by SAS.
20. Given: $\overline{M P}\|\overline{N S}, \overline{R S}\| \overline{P Q}, \overline{M R} \cong \overline{N Q}$

Prove: $\triangle M Q P \cong \triangle N R S$
$\overline{M P \|} \| \overline{N S}$ and $\overline{R S} \| \overline{P Q}$ mean that $\angle 1 \cong \angle 4$ and $\angle 2 \cong \angle 3$, respectively, by the Alt. Int. $\mathbb{}$ s Thm. It is given that $M R=N Q$, so $M R+R Q=N Q+R Q$, or $M Q=N R$, by the Add. Prop. of $=$. Therefore, $\triangle M Q P \cong \triangle N R S$ by ASA.
22. Given: $\angle O T S \cong \angle O E S, \angle E O S \cong \angle O S T$

Prove: $\overline{T O} \cong \overline{E S}$

$\overline{O S} \cong \overline{O S}$ by the Reflexive Prop. of \cong. Since $\angle T \cong \angle E$ and $\angle T S O \cong \angle E O S$, $\triangle T S O \cong \triangle E O S$ by AAS, and $\overline{T O} \cong \overline{E S}$ by CPCTC.
24. Given: $P O=Q O, \angle 1 \cong \angle 2$,

Prove: $\angle A \cong \angle B$

$\angle 1 \cong \angle 2$, so $\angle A P O \cong \angle B Q O$ because suppls. of $\cong \mathbb{\&}$ are $\cong P O=Q O$ (Given) and $\angle A O P \cong \angle B O Q$ as vert. \angle, so $\triangle A O P \cong \triangle B O Q$ by ASA. $\angle A \cong \angle B$ by CPCTC.
\qquad
\qquad Date \qquad

Extra Practice (continued)

Chapter 4

Lesson 4-5

Find the value of each variable.
25.
25

27.

28. Given: $\angle 5 \cong \angle 6, \overline{P X} \cong \overline{P Y}$

Prove: $\triangle P A B$ is isosceles. $\overline{P X} \cong \overline{P Y}$ (Given) means that $\angle 1 \cong \angle 2$

Lessons 4-6 and 4-7

29. Given: $\overline{A P} \cong \overline{B P}, \overline{P C} \cong \overline{P D} \quad \overline{A P} \cong \overline{B P}$ and $\overline{P C} \cong \overline{P D}$ Prove: $\triangle Q C D$ is isosceles. (both given).
$\angle A P C \cong \angle B P D$ as vert. Ls, so $\triangle A P C \cong \triangle B P D$ by SAS. $\angle A C P \cong \angle B D P$ because CPCTC.
$\angle P C D \cong \angle P D C$ by the Isos. \triangle Thm. $m \angle A C P+m \angle P C D=m \angle B D P+m \angle P D C$ by the Add. Prop. of $=$, so $m \angle A C D=m \angle B D C$ by the \angle Add. Post. and substitution. $\overline{Q D} \cong \overline{Q C}$ by the Conv. of the Isos. \triangle Thm., and $\triangle Q C D$ is isos. by def. of isos. \triangle.

Name a pair of overlapping congruent triangles in each diagram.
State whether the triangles are congruent by SSS, SAS, ASA, AAS, or HL.
30.

32.

34. Given: M is the midpoint of $\overline{A B}$,

$$
\overline{M C} \perp \overline{A C}, \overline{M D} \perp \overline{B D}, \angle 1 \cong \angle 2
$$

Prove: $\triangle A C M \cong \triangle B D M$
31.

33.

$\angle 1 \cong \angle 2$ (Given), so $\overline{M C} \cong \overline{M D}$ by the Conv. of the Isos. \triangle Thm. $\overline{A M} \cong \overline{B M}$ by the def. of midpt. $\overline{M C} \perp \overline{A C}$ means that $\angle A C M$ is a rt. \angle and $\triangle A C M$ is a right \triangle. $\overline{M D} \perp \overline{B D}$ means that $\angle B D M$ is a rt. \angle and $\triangle B D M$ is a right $\triangle . \triangle A C M \cong \triangle B D M$ by HL .
35. The longest leg of $\triangle A B C, \overline{A C}$, measures 10 centimeters. $\overline{B C}$ measures 8 centimeters. You measure two of the legs of $\triangle X Y Z$ and find that $\overline{A C} \cong \overline{X Z}$ and $\overline{B C} \cong \overline{Y Z}$. Can you conclude that two triangles to be congruent by the HL Theorem? Explain why or why not. No; you only know that two sides (SS) are congruent, and you don't know that there are right angles.

